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Abstract. This paper concerns the application of model-bgsedlictive control to the longitudinal mode of aircraft
in a terrain following task. The predictive contaghproach was based on a quadratic cost functiahafinear state-
space prediction model with input and state comstsa The optimal control was obtained as the sofutof a
quadratic programming problem defined over a rengdiorizon. Closed-loop simulations were carried by using
the nonlinear aircraft model. An elevator actuatfailure was introduced in order to analyze the colier
performance in the presence of tighter input caists. The results show that predictive control rbayan adequate
alternative for terrain following tasks, especiaifythe input constraints become more strict asrdwult of an actuator
failure.
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1. INTRODUCTION

Model (Based) Predictive Control (MPC) is a contrithodology that has been applied with signifigemgact on
industrial plants, specially in cases involvingutgpand state constraints. The essence of MPCaptimize, over the
manipulated inputs, forecasts of process beha@lassical control strategies (such as PID, foraimst) normally do
not explicitly consider the future implicationstbie current control action. To some extent thiagdsounted for by the
expected closed-loop dynamics. MPC, on the othed hexplicitly computes the predicted behavior oseme time
horizon. The term MPC, in reality, designates aewidnge of control methods that make use of a psoo®del in
order to obtain the optimal control value by mirimg a cost function. MPC algorithms differ amorgrhselves
mainly due to the model used to represent the psobeing controlled, the representation of measememoise and
exogenous disturbances, and the objective funtbidil® minimized (Camacho; Bordons, 2000).

MPC can be used to control a great variety of mses, including systems with non-minimum phasenstable
dynamics. Additionally, it handles actuator constiin a systematic form and intrinsically prowddsompensation for
dead times (Camacho, Bordons, 2000), (Maciejow&B2). One disadvantage of such a methodology cosdhe
computational effort required, as the control ai@re obtained by solving a dynamic optimizatioobfem in real
time. However, the greatest drawback when compuetthe traditional control methodologies is the chder an
appropriate model of the process to be availabéen@ho; Bordons, 2000).

Predictive control has been applied to a wide rafgaeas, especially those related to processstndiChemical
industry, for instance, has adopted predictive rmbrdgtrategies due to the simplicity of algorithibased on step
response models of the process. The petrochesdctir has also used predictive control approagihes the eighties
as reported by (Camacho; Bordons, 2000). Otheriaghgins of predictive control schema can be foumaobot
manipulators, clinical anesthesia equipment and Pi4bts, among others. Regarding high bandwidtHicgijons,
such as aeronautics and space, MPC has only netereth studied as a suitable control approachtaltiee growth of
the processing capability of computational resasirée special with respect to Flight Control Syste(RCS). For
example, to extend MPC applications to miniaturidedices and/or embedded systems, the implememtafithis
control technology has been explored into recomfible hardware such as FPGA chips (Ling; Yue; Mawaisgki,
2006).

Several studies have been conducted to better staddrthe applicability and feasibility of PredietiControl to the
aircraft FCS. In this context, MPC has been repoes a possible control strategy for a super marable aircraft
(Maciejowski; Heise, 1996). A fault tolerance amsidywas accomplished for a high performance aecespgstem
which makes use of MPC with the objective of dentratimg its effectiveness in handling control suogdailures
(EBDON; HEISE, 1997). An XV-15 Tilt Rotor Contralugly using MPC was performed as well as the impigat®n
on a real time simulator (MEHRA et al., 2001). Aght Control System for a Reusable Launch Vehidgeld on MPC
can be found and has demonstrated, among othdtstethe potential of MPC for reconfigurable comt(bliotto;
Lepome, 2003).

In the present paper, the potential advantagesin§uMPC as the Flight Control System for an aftgoarforming
a Terrain Following task are investigated. Suclask tconsists of tracking the ground profile, overredetermined
height. It is primarily used by military aircrafin@inly fighters) to enable flight at low altitudedihigh speed. The
main objective of such unusual trajectory is tovjte low radar signature, thus avoiding detectignahti-aircraft
systems. Since pilots would not be able to reaahi@nges in terrain profile in a timely mannerisilnecessary to
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provide terrain-following radar supporting a condairflight control system. However, limitations amé of response,
load factor or even weather conditions may impasesizaints on how low and fast an aircraft canguerfa flight.

Terrain Following Problem (TFP) comprises trajegtplanning and trajectory tracking, where the fisstelated to
the generation of reference trajectory that folloavspredetermined terrain (satisfying mission rezagnts and
performance constraints) and the second involvitesk for FCS, which ensures that the system wliibfy, with some
precision, the flight path in the presence of exdkdisturbances. Several approaches have beelopegdo deal with
TFP. The longitudinal motion of aircraft is nornyatlonsidered despite the fact that better terrallovfing could be
achieved using both longitudinal and lateral-diewl trajectory, specially dealing with maneuveesformed to avoid
collision (Williams, 2005).

The present work involves a simplified nonlineardslofor the longitudinal dynamics of a fighter aaft. The
prediction model to be used in the controller isaoted by linearization of the state equations adoan equilibrium
point. Closed-loop simulations are carried outhie Matlab-Simulink environment. The results shoat thie controller
is capable of providing adequate tracking of threate profile with proper handling of input and tetaconstraints. In
addition, appropriate performance is maintaineth@presence of an actuator failure that resttietsexcursion of the
elevator.

The remaining sections of this paper are organgzetbllows. Section 2 presents the MPC formulatidopted in
this work. Section 3 describes the aircraft modepleyed in the case study. Section 4 presentsahampeters adopted
in the simulations. Section 5 reports the resuits$ discusses the potential advantages of using MRRe scenarios
under consideration. Finally, concluding remarlesgiven in Section 6.

2. CONSTRAINED MODEL BASED PREDICTIVE CONTROL

The MPC controller aims to calculate the optimatteal actions by minimizing a given cost functidWhen the
system is unconstrained, a closed form mathemagmation may be derived. However, when active trairgts are
present, the solution must be obtained by usingemnizal optimization techniques (Miotto and Lepor@8p3). The
constrained case will be covered herein.

Consider a system of ordey with p inputs andj outputs, with the discrete state space represemtgiven by Eq.
(1) and (2).

x(k+1) = Ax (k) +Bu (k) 1)
y(k) = Cx(K) 2)

wherek € Z" is the discrete time index € R" represents the state vectarg R P is the input vector ang « RYis the
output vector. The state, input and output matrazesdenoted bj, B and C, respectively. The state space model is
used to predict the behavior of the plant, staréibthe current time, over a future prediction hami. Control inputs are
calculated by minimizing a cost function and, a game time, enforcing the system constraints. cbise function
chosen, expressed in Eq. (3), has a quadratic &uninvolves both the error values (difference leetwthe reference
trajectory and the predicted output) and contrghal variations.

J=(Y-R) " Wy(Y -R)+AJ 'WuJ 3)

In Eq. (3),J is the cost function valuey represents the predicted output ved®rs the reference vector ansdJ is
the vector of predicted control variations. Theaeameters are defined in Eq. (4}, andW, are the weight matrices
for the error and control variation values andgiven by Eq. (5) and (6).
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The predicted values for the outpik +i | k), are obtained from the state space model atithekti The parameter

H, represents the prediction horizon, which detersithe extension of the prediction in terms of thardity of sample
periods Ts). The predicted control variationsi(k +i| k), represent the change of the control signal refeto the

previous sample period. They are obtained for araobiorizon, H,, which is usually smaller than the prediction
horizon (i.e.,H, < Hp). This leads the minimization to work over a smalimber of variables, diminishing the
demanded computational effort. After the minimiaatdf the cost function has achieved the best obu#riations, just
the first value is used, i.au(k)= AT (k | k).

The state space model (Eqg.(1) and (2)) can betosevrite the cost function (Eq. (3)) by expregsr?lin terms of
AU as

Y =GAU +F 7)

where G accounts for the matrix that, multiplied by theeglicted control variations, yields the additiongstem
response to the control movements over the preditiorizon andr is the system response vector when applying only
the inputs of the previous sampling insta@tandF are given by Eq. (8) and result from grouping téens after
iterating state space model for tHg sampling periods, to obtain the predicted systespanse as a function of the

predicted control variationgyU . Eg. (9) and (10) present the terms that const@uandF.

G=TP F=T9QAx(k)+T y(k) (8)
Hp Hp q
Iq o -~ 0 CB 0 0
ol o CAB CB - 0
Tho=la e T e T S - (©)
Hp oo : : " :
o, cA™'B cA™B ... cA™ "B
CA |
q
CA’ |
Q=| | re=| (10)
CA" l

In Eqg. (8), (9) and (10)Ax(K) is the state variation vector referred to the mresisample time and is thegx q
identity matrix. By replacing Eqg. (7) into (3), oobtains Eqg. (11), which is a quadratic expressiderms ofAU .

3(A0) = % A0 1(A0)+17A0 +¢ (11)

wheren, f andc are given by Eq. (12).
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n=2G WG +Wy f=2"WyF-R) c=F-R )Wy R) (12)

In the absence of restrictions over the inputspuist or states, the vector that minimidgg&qg. (11)) can be obtained
by calculating the gradient fdrand making it equal to zero (Eq. (13)).

oJ ~NT T * -1
= = = — 13
A0 AU n+f =0 AU nf (13)

whereAU” denotes the vector of input changes that minimize<ost function value.

In the presence of system restrictions represermingtraints over the inputs (or input variatiorsstes or outputs,
this algebraic solution may not be admissible.his tase, the optimal control can be obtained assttution of a
Quadratic Programming (or QP) problem, for whichnstard algorithms are available. The restrictianstlie inputs,
states and outputs will be considered as uppetcavet limits for their values and are expressefdn (14) and (15).

_Aumin Aa(k | k) _Aumax _umin_ | a(k | k) umax
. AUk +1|K . Gk+1|k
Au‘mln < u( . | ) < Au.max r‘nln < u( . | ) < umax (14)
_Aumin AO(k"‘Hu'llk) _Aumax | Unin | 0(k+ Hu -1|k) U max
_Xmin §((k * 1| k) Xmax_ _ymin_ I 9(k * 1| k) ymax
. X(k+2|k _ y(k+2]|k
erun S ( . | ) < an'laX yr;']m S y( . | ) S yrzlax (15)
_Xmin 5\((k + H p | k) Xmax_ _ymin_ 9(k + H p | k) ymax
The set of constraints can be expressed by inekqasaihlvolvingAU , as summarized by (16).
AHLJ [Aumax]
Mo, ] -A,, TAu
-1
P Ay lu ]
Hy max
T
i _AH |:umin:I
! 0 < ! 16
T 12751 A X Kk x(K)-K u(k-1) (16)
Hp max A B
KAB
K ag AHp[xmin +KAx(k)+K Bu(k—l)]
G
A -F
| -G ] Hp[ymax:I
L F -AHp |:ymin:I ]

wherel,n, denotes thepH, x pHy) identity matrix and the operaton] ]” creates ani(x 1) vector of its argument.
MatricesK 5, Kg andK a5 are given by Eq. (17).
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3. AIRCRAFT LONGITUDINAL DYNAMICS

The description of the aircraft flight dynamics exsigally aims to determine the forces and momemtshich it is
subjected to and then obtain, as a result, itsleet®n, velocity and position as a function of time. For this paper,
the dynamic will be expressed with the applicat@nNewton’s Second Law for both translational amthtional
movement, with an ultimate interest in the aircrimihgitudinal mode. Aircraft control means, simptally, to
somehow manipulate the applied forces or momentatse acceleration to change in a way that yigldsdesired
position and velocity. Typically these forces andments will be from aerodynamic and propulsive iorigind the
usual controls are elevators (or elevons), aileromdders, canards, flaps, spoilers and slats. HBoeyo change the
local pressure distribution and hence the aerodim#orces and moments (Durham, 1997).

The external forces that accelerate an aircraftraade up of its weightV, the aerodynamic resultant foreg and
the thrust of the propulsive systein, and are given by Eq. (18) (Body-axis refereneente used). The forces that
actuate through the Y-body axis are being negletiwtefore, no latero-directional movement is uratelysis.

—mgsin(9) X Tcose. )
{W}B = 0 {RA}B =10 {T}B = 0 (18)
mgcos@ ) z Tsing_ )

wherem is the aircraft masgy is the gravity,é is the pitch angleX andZ are components of aerodynamic force
(expressed in the body reference framidy the thrust modulus ang is the angle between the thrust vector andkthe
body axis. In terms of moments and taking as tfereace the aircraft CG point, the weight forcesipnet generate any
moment around it, since it acts through the CenfdBravity. Only the moment generated by the aemadyic and
propulsive forces are considered. The aerodynantiment about the CG, denoted Mg and the thrust generated
moment, referred dd 1, are represented in the Body reference frame byI=).

0 0
{Mplg=|m Milg=|m (19)
0

3.1 Forces and Moment Equations

The aerodynamic forces and moments acting on tieeadtican be defined in terms of the dynamic pres, a
characteristic areg a characteristic lengthy and dimensionless aerodynamic coefficients. Rspgforce is obtained
by a simplified model, which considers the depewdeinom the thrust into basically the velocity bktair and its
density. Forces, moment and dynamic pressure emsadre given by Eq. (20).

B B B 3 1 nv nr
X=GSG z=9S¢ m="qshC ey’ T=g, 5(\\/’] (;’] (20)

wherep is the air density and is the velocity modulus. The force coefficie@sandC; are obtained front, andCp,
aerodynamic coefficients derived from the forcescdided in wind axis representation. They are piibngbtained by
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the suitable transformation from wind to body a¥ierce and moment dimensionless coefficients arengby Eq. (21)
and (22).

_ qc _

C.=C,+Ca+G o+ C G =G, K G K,C (21)
.. C

Co= Coy + Gy, * C 0 * (Cya+ i)y - (22)

3.2 Equations of Motion

The equations of motion are the differential equreithat describe the evolution of the most comsnrepresented
states of an aircraft: the scalar components ofviiecity, the position vector components, the raadon or Euler
angles, etc. Given the translational and rotatiee#icity vectors (here denoted ¥sandw, respectively, presented in
Eqg. (23)), the differential equations for theirmmgmonents follows as expressed by Eg. (24).

{Me=[uvw {bg=[pard (23)
o= 2T _gsing)-qw v ZTI) googy qu g= (24)

y

wherem is the resultant moment acting on the aircraft gnid the moment of inertia arourddbody axis. Other
important differential equations are presenteddn(25), wherex is the angle of attack and z is is the altitude.
0=q g= W Z =u sing )+ w co¥( ) (25)
u?+w

4. SIMULATIONS

In the simulations, the state vectowas defined asM a 6 q H". The control inputs were the throttle setting and
elevator actuator deflection, represented &y §. 1. First order filters were used as the engine dedator actuator
dynamics and were considered in both the non-liaedrlinearized state space representations. fifeedbnstants are,
respectively, Zeng =5 and zejey = 0.0495 seconds. Linearization was obtained forightflcondition with airspeed
velocity of 100 m/s, 500 m of altitude, resulting equilibrium control inputs of [0.334 -0.0649]. N&b / Simulink
environment was used to obtain the results. The ld@@meters adopted in the simulation are fourichin 1.

Table 1. Predictive controller parameters.

Parameter Value Unit
Ts 0.3 sec
Hp 50 sample periods
Hy 20 sample periods
u 18 1/nf

(oL, 2] [25 20] [- lrad

Initially, the constraints were defined for theutpand states, except for the stdtevhose lower bound constraints
were established on the basis of the terrain dagapassed to the controller. Inequality (26) shitvesvalues chosen
for such constraints, considering it as deviatiith respect to the equilibrium values. After thetuator failure, which
limited its maximum excursion téb°, the constraints represented by (27) were corsideside the controller.

-30 m/s \% 30 m/s
-0.1717 ra a 0.8755rad -0.3342 O 0.6658
< < < < 26}
-0.7854 ra 17 0.7854 rad -0.3715 ra S, 0.5012 rac
-1.047rad/ q 1.047rad/
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In order to make predictive controller aware abing new elevator actuator constraints, a failured®mn and
diagnostic module would be necessary.

The quadprogfunction, from Matlab Optimization Toolbox, wasedsto calculate the solution of the QP problem
in the simulations. Th&ledium Scale Quadprog Algorithwas used, which is an active-set strategy alsevknas a
projection method (Mathworks, 2009). Based on #mein following task, the reference trajectory wétained with a
terrain database, which contains only informatibow the ground profile and does not include thighteof trees or

buildings. An altitude clearance of 50 meters abthe ground was assumed. Therefore, the outpupcset-was
chosen as the terrain profile added to the clearaalue.

5. RESULTS

Figure 1 presents the aircraft response consideri@glt which restricted the elevator actuatoruesion. The fault
was inserted during the simulation after 39 kmisfathce. As can be seen, the aircraft was ablerttrue tracking the
terrain reference with error values very similartite system with nominal excursion for the elevatotuator. The
maximum errors reached approximately 40 m aboveetow the reference trajectory which did not catlseaircraft
to collapse with the ground in any instant. In otwerds, the constraint for the altitude was ergdrby the controller.
For relatively constant terrain reference, which ba noted between 23 and 30 km, the error wadipalig driven to
zero. The points with higher error values were plee to be those with highly abrupt terrain vadas. Figure 3
shows the values obtained for the velocity, andlattack, pitch angle and pitch rate. It can beeobsd that the
velocity reached higher values after the actuatiturie, with an average value of almost 120 m/s.
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Figure 2. Aircraft altitude error.
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Figure 3. States velocity, angle of attacky, pitch angled and pitch rate obtained in the simulation.

This behavior arises due to two aspects: first Ipfta obtain the same lift force in the elevatarface and
associated pitch moment with the constrained amtu#tte airspeed needs to be larger, in order taimka higher
dynamic pressure. In fact, the lift coefficienti®re limited with an excursion constraint for thevator actuator. The
other point to be emphasized is that now the maimtrol that can provide altitude variation is tlneust. As the
propulsive force is used more intensely it causesges in the aircraft velocity, increasing it, dmerefore, leading to
higher lift force.

Prior to the actuator failure, the angle of attatyed within the limits imposed by the constrafotsthe majority
of the simulation time. In some points, the andlattack decreased to less than the minimal valoered. The reasons
for this violation are two-fold. Firstly, the aigdt is flying with significant deviation from theopit where the linear
model was obtained. Therefore, the predictionsamriesrrors with respect to the actual output ofrtbe-linear model.
Such prediction errors can lead to control valhes drive the aircraft to go beyond the allowabisits. Secondly, the
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algorithm finds the minimization infeasible in sopeints. As a result, the optimization outcomeus of the control
input range, but it is still sent to the plant attrs as commands. Control signal saturation iSexpa posteriorj to the
throttle setting and elevator surface deflectioag&ding the pitch angle, it can be observed thstayed within the
established limits. The maneuvers were performet wiore than -10° and up to 40°. For pitch rate, liimits were
briefly violated for some instants as with the &gl attack.

After the actuator failure, the angle of attack dnel pitch rate presented a more oscillatory befmais can be
seen, the predictive controller was able to keefh hariables within the limits imposed for the mé#jp of the
simulation time, even dealing with a more restdcexcursion for the elevator actuator. The poimisesponding to
brief violation of the constraints are relatedeadibility problems.

The control inputs generated by the predictive mier can be seen in Fig. 4. The elevator actuaimursion
constraint led to an excessive demand of the terotput, transferring to it the main control fdretaircraft altitude,
indirectly by the means of the velocity. This effeould be minimized by an online change of thegheiinputs,
increasing those related to the less constrairpat.ift can also be seen that the optimization feasd to be infeasible
at some sampling times and led to input excurdiaysnd the imposed limits for the algorithm. Fagdé cases, several
possibilities could be used to minimize the effemtssuch undesirable controller behavior. A podigibconsists of
using the control signahl(k | k - 1) calculated in the previous sampling time. More ssftated strategies try to relax

the least important constraints in an attempt ¢@irefeasibility (Maciejowski, 2002). For this casepossible approach
would be, for example, to allow a negative excurdmr the angle of attack lower limitation, or toetch the pitch rate
constraints.

L] 100 200 300 400 s00 Lilili] T00
Time [s]

Figure 4. Commanded inpui§ (comyandde (com)

The inputs sent to the aircraft through the actsadme presented in Fig. 5. Although the engineadyns turn the
system actuation slower, the predictive controlies already included it into the linear model whil help the
system to provide the necessary thrust to perfbiemaneuvers and with reduced variations in thecitgl value. For
the elevator actuation, it practically followed tsignal sent by the controller, as its dynamia®iatively fast. It has to
be emphasized that the weight value chosen foeléaator input was observed to be quite suitablié grovided few
points of full excursion for this actuator (priarthe elevator actuator failure).
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Figure 5. Input$, andd, effectively applied to the aircraft.
6. CONCLUSIONS

This paper presented an evaluation of a model bargetictive controller used to control the aircfitude in the
course of a terrain following task. A simplified mbnear model was used to simulate the systemoresp The
predictive controller made use of a linearizedestgtace representation in order to obtain thersyptedicted behavior
for optimization purposes.

With the system running at its nominal constraittte, simulations showed that the predictive cotdralas a good
approach to provide reference tracking for a tarmgith strong altitude variations over its lengBystem constraints
were in its majority respected during the simulatiexcept by some points in which the optimizatgorithm found
the problem to be infeasible. This infeasibilityoplem could be managed, for example, by on-linaxaion of the
constraints. Upon the onset of a fault which rettd the excursion of the elevator actuator, theamihge of the
predictive controller to deal with such a restraimts evident. In fact, good reference tracking progher satisfaction of
the constraints were preserved. Although the thinyeit was much more demanded, the controller meshégkeep the
system state within the imposed limits.
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