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Abstract. This work presents a fault-tolerant flight control system using model predictive control (MPC). The proposed
technique, named feasible target-tracking MPC, filters the reference demand to guarantee feasibility of the constrained
optimization. This architecture is also capable of redistributing, in a stable manner, the control efforts among healthy
actuators, respecting their limitations. A trajectory tracking system based on the proposed fault-tolerant model predictive
controller is demonstrated using the ground simulator of the VFW-614 ATTAS (Advanced Technologies Testing Aircraft
System), showing feasibility and adequate performance.
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1. INTRODUCTION

Model predictive control (MPC) is widely used today as a strategy to control plants with input and output constraints,
which also has encouraged its application to design fault-tolerant controllers, since actuator faults reflect into new con-
straints and then the internal optimizer tries to find an optimal solution considering the new limitation. Maciejowski and
Jones (2003), Kale and Chipperfield (2005) and Miksch et al. (2008), among others, have investigated the benefits and
disadvantages of MPC for fault-tolerant control. However, most of the implementations make use of a cost function with
two different horizons, namely prediction and control horizons. Those schemes have no guarantee of closed-loop stability
(Mayne et al., 2000) and introduce additional complexity during the design phase.

Recently, Almeida and Leissling (2009) proposed a fault-tolerant tracking MPC with infinite prediction horizon and a
translated terminal invariant set to guarantee stability. It is already known (Limon et al., 2005) that terminal sets signifi-
cantly reduce the domain of attraction of the controller, thus large control horizons are required to maintain feasibility for
a given state vector. Such large horizons would be implementable for controlled processes with slow dynamics. Unfortu-
nately, this is not the case for flight control systems, where the dynamical modes are normally faster than those controlled
by MPC strategies in the process industry. Also, the on-board available computational resources must be shared with
several functionalities of the complete guidance and control system.

Focusing on the design of fault-tolerant flight control systems, this work presents a new technique denominated fea-
sible target-tracking MPC, which demands shorter control horizons than the current MPC formulations. The key concept
is to filter the reference demand to guarantee the feasibility of the constrained regulator. The modification of the demand
is done by a steady-state target optimizer, considering the current state and disturbance acting on the system. A similar
procedure of demand filtering can be found in Limon et al. (2008), but here the sets of constraints on state and input do
not necessarily contain the origin, allowing the application of the proposed technique in various scenarios of faults. Also,
the controller incorporates a state and disturbance observer to track a desired reference without offset error.

This paper is organized as follows. In the next section, the proposed feasible-target tracking MPC is presented.
Section 3 presents a trajectory-tracking system with the lateral autopilot designed through the technique of Section 2. The
implementation of the complete system into the ATTAS ground simulator, and the correspondent simulation results, are
presented and discussed in Section 4.

2. FEASIBLE TARGET-TRACKING MODEL PREDICTIVE CONTROL

This section presents a new model predictive control technique for tracking a desired reference. Based on the values of
the state and disturbance vectors, feasible target state and control vectors are computed and utilized by the infinite horizon
MPC regulator. The weighting matrices of the regulator are selected according to the implicit model following technique.
This choice provides that the eigenstructure of the closed-loop system will be kept close (in a least-squares sense) to a
specified model even with actuator faults, provided that enough analytical redundancy exists in the system. Also, a linear
observer is proposed to provide offset-free tracking of a time-varying reference, which improves significantly the robust
performance of the controller.

Figure 1 shows the overall structure of the proposed solution. The discrete controller (circumvented by the dotted line)
has three main functionalities: a feasible target calculation, the MPC optimizer, and a linear observer. It is assumed that a
fault detection and isolation system (FDI) provides to both target calculation and MPC schemes correct information about
the status of the actuators.

The feasible target calculation subsystem computes the state and control vectors (xss and uss) at the steady-state,
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Figure 1. Overall structure of the proposed feasible target-tracking MPC

which are required to give offset-free tracking of the reference signal rss. This calculation considers the limitations of
the actuators, thus comprising a constrained problem. Here is the main contribution of this work: a conversion of those
limitations into a new set of constraints is proposed, which guarantees that - based on the computed vectors xss and uss -
the MPC regulator reaches a feasible solution.

With the calculated steady-state values, the estimated state vector x̂k is subtracted of xss to convert the tracking
problem into a regulation over the desired steady-state condition. In turn, the regulator control law is the sum of two
contributions: a linear part with static linear feedback gain Kd and a nonlinear correction ck calculated by the MPC
system. The MPC is designed in a way that only generates corrections if x̂k is such that the linear control part pushes
the actuators and/or aircraft against the limitations. This means also that, in the event of an actuator fault, the nonlinear
correction ck redistributes the control effort among the available actuators. A linear, unconstrained observer is employed
in the proposed scheme to provide proper estimates of the disturbance d̂k and state x̂k. The estimation of the disturbance
is a crucial element to avoid offset when tracking a desired reference. Here, not only exogenous elements (e.g. turbulence)
but also unmodeled actuator and aircraft dynamics are considered as disturbances.

2.1 Feasible target calculation

Let the discrete-time state-space model be defined by

xk+1 = Φxk + Γuk + Γddk

dk+1 = dk

yk = Exk

zk = Hyk

(1)

where xk ∈ Rn is the state vector, uk ∈ Rm is the control vector, yk ∈ Rp is the vector of observed variables, zk ∈ Rq ,
m ≥ q is the vector of controlled variables and dk ∈ Rq is the vector of disturbances. The motivation of incorporating
a disturbance vector is to consider mismatches between plant and nominal model, as well as external disturbances acting
on the plant. The pair (E,Φ) is assumed to be detectable with E full row rank. Also, the disturbance vector is assumed to
be estimated by a proper observer (to be introduced later).

The disturbance model chosen is a simple integrator. If desired, one can choose different dynamics for the disturbance,
as done in Pannocchia and Rawlings (2003). The disturbance matrix Γd must be chosen by the designer and thus intro-
duces a degree of flexibility in the design. Its choice may be motivated by an actual disturbance acting on the system or
may let be free as a design parameter. Since the disturbance is not measured, the choice of the disturbance matrix may be
a significant challenge.

Thus, the objective of the control system is to asymptotically eliminate the tracking error given a reference signal rss,
that is

zk −−−−→
k→∞

rss (2)

in the presence of disturbance dk and constraints in the state and control vectors xk ∈ X,uk ∈ U, where X and U are
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closed, bounded and convex sets expressed by linear inequalities. This problem corresponds to finding the new equilibrium
point of the plant in steady-state, which turns into the determination of the steady-state target vectors xss (rss,dk) and
uss (rss,dk).

In the context of fault-tolerant flight control, it is often the case that constraints are active in steady-state. This may
happen when actuators jam at a non-zero position or the disturbance dk is large enough to push states and controls against
the constraints. Considering that m ≥ q, the following constrained target calculation problem is solved to obtain xss and
uss

min
xss,uss

J (rss,dk) = (HExss − rss)T Qss (HExss − rss) + uT
ssRssuss

subject to:
(Φ− I) xss + Γuss + Γddk = 0

uss ∈ U

xss ∈ X

(3)

where Qss and Rss are weighting matrices. This corresponds to a quadratic programming problem, whose feasibility
is guaranteed by the penalization of the difference between the desired (rss) and the reachable (zss = HExss) target.
If the constraints are too stringent, the reachable target will be near to the desired target in a least-squares sense. The
second term of the cost function penalizes the control vector in order to produce a small uss. Nevertheless, feasibility of
this constrained problem does not guarantee feasibility of the constrained MPC regulator, because the estimated state and
disturbance vectors are not taken into account. For given x̂k and d̂k, there is an allowable set of demands that would drive
the constrained regulator to a feasible zone, reflecting into smaller admissible sets of xss and uss.

The starting point to determine those sets is the proposed control law predicted for N steps

uj = −Kd (xj − xss) + uss + cj j = 0, . . . , N − 1
uj = −Kd (xj − xss) + uss j ≥ N (4)

where x0 = x̂k. The MPC regulator calculates the contribution cj over N steps. It is assumed that after N steps the
constraints are no longer active, which is equivalent to saying that the state vector at j = N is inside an invariant set
O∞ (xss,uss).

Therefore, assuming that xss and uss keep constant for a given reference, it will be convenient to extend the state-space
vector as

[
xT

j xT
ss uT

ss dT
j

]T
, leading to the following extended dynamical model

xj+1

xss

uss

dj+1

 =


Φ− ΓKd ΓKd Γ Γd

0 I 0 0
0 0 I 0
0 0 0 I




xj

xss

uss

dj

+


Γ
0
0
0

 cj (5)

The computation of the invariant set O∞ (xss,uss) requires the correct formulation of the constraints that are imposed
on
[
xT

j xT
ss uT

ss dT
j

]T
. It is clear that state, input and disturbance constraints can be expressed in terms of linear

inequalities:

Ccxj ≤ xmax

−Ccxj ≤ −xmin

Ccxss ≤ xmax

−Ccxss ≤ −xmin

uss ≤ umax

−uss ≤ −umin

dj ≤ dmax

−dj ≤ −dmin

−Kdxj + Kdxss + uss ≤ umax

Kdxj −Kdxss − uss ≤ −umin

(6)

where xmax, xmin, umax, umin, dmax and dmin are the bounds on state, control and disturbance vectors, respectively.
Hence, the setO∞ (xss,uss) can be constructed using the techniques described in Gilbert and Tan (1991), considering

the extended dynamical system given by Eq. (5) and constraints Eq. (6). From O∞ (xss,uss), one can compute the
polyhedral set XN of extended states that can be steered to O∞ (xss,uss) by N control steps CN = {cj}N−1

j=0 while
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respecting the constraints. This is done by recursion, substituting the dynamical system Eq. (5) into the constraints Eq. (6)
for j = 0, · · · , N − 1, and then projecting the resulting convex set onto the subspace spanned by

[
xT

k xT
ss uT

ss dT
k

]T
.

The projected polyhedral set XN assumes the form

XN = {(xk, xss,uss,dk) |Mxxk + Mxssxss + Mussuss + Mddk ≤ kN} (7)

Finally, the set XssN
of admissible steady-state values, which assures feasibility of the MPC regulator, is computed,

at each sampling time, through substitution of x̂k and d̂k into XN . This operation is often called slice of a polyhedron.
Thus, the feasible target values of xss and uss are obtained through the solution of the quadratic programming problem

min
xss,uss

J
(

rss, x̂k, d̂k

)
= (HExss − rss)T Qss (HExss − rss) + uT

ssRssuss

subject to:
(Φ− I) xss + Γuss + Γddk = 0

(xss,uss) ∈ XssN

(8)

It should be noted that XssN
⊆ XssN+1 , because larger control horizons mean more discrete steps to steer the

extended state-space into the invariant set O∞ (xss,uss). This is equivalent to say that, for a given pair
(

x̂k, d̂k

)
, the set

of admissible steady-state references zss is wider with larger control horizons.

2.2 Constrained implicit model following regulator

The implicit model following form of the MPC regulator (Almeida and Leissling, 2009) was chosen because it provides
proper dynamic control allocation in the case of one or more actuators reaching the saturation, maintaining the transient
response as close as possible to the specified reference model.

The objective of the regulator is to drive the state vector to the origin, given x0 = xk. Converting this to a tracking
control problem is done simply by translating the origins of state and control vectors to the desired state and control
reference values xss and uss. Defining x̃j = xj − xss and ũj = uj − uss, the regulator problem is converted to a tracker
replacing x and u by x̃ and ũ, respectively. The translation also applies to the initial state x0, admissible sets U, X and
the invariant set O∞. It should be realized that this translation cancels the influence of the disturbance on the transient
response, because dk = dk+1 = d̂k and then d̃k = 0. Hence, the nominal system for regulation is given by

x̃k+1 = Φx̃k + Γũk (9)

The idea of implicit model following is to modify the continuous-time LQR cost function, penalizing the deviation of
the system output from a certain reference model output. Let the continuous-time representation of Eq. (9) be defined by

˙̃x = Ax̃ + Bũ
w = Cx̃

(10)

Suppose that the performance output w in Eq. (10) is required to follow the transient behavior of the autonomous
model

ẇm = Amwm (11)

The matrix Am has the reference eigenstructure of the regulator. When the control objective is met, the performance
output w will satisfy Eq. (11). One can define an error by

e = ẇ− Amw (12)

and a cost function by

J =
∫ ∞

0

(
eT Qe + ũT Rũ

)
dt (13)

Since ẇ = C ˙̃x = CAx̃ + CBũ, the cost function becomes

J =
∫ ∞

0

(
x̃T Qmx̃ + 2x̃T Wmũ + ũT Rmũ

)
dt (14)
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where

Qm = (CA− AmC)T Q (CA− AmC)

Wm = (CA− AmC)T QCB

Rm = BT CT QCB + R

(15)

Therefore, by appropriate choice of the performance index matrices it is possible to guarantee implicit model following
and thus desirable closed-loop behavior. The equivalent discrete-time version of the performance index Eq. (14) is an
infinite sum over the sampled states and inputs (Bryson, 1994)

J =
∞∑

j=0

(
x̃T

j Qdx̃j + 2x̃T
j Wdũj + ũT

j Rdũj

)
(16)

The discrete versions of the weighting matrices, given the sampling time Ts, are calculated by (McLoan, 1978)

Qd = QmTs +
(

QmA + AT Qm

)
T 2

s /2 + · · ·

Wd = WmTs +
(

AT Wm + QmB
)
T 2

s /2 + · · ·

Rd = RmTs +
(

WT
mB + BT Wm

)
T 2

s /2 + · · ·

(17)

where only the first two terms will be used to determine Qd,Wd,Rd approximately.
To obtain a reconfigurable flight controller, it is desirable to design, independently, an unconstrained controller and a

supervisory module that gives control corrections in case of an actuator fault. The key to this approach is the control law
given by Eq. (4) (Rossiter et al., 1998)

ũj =

{
−Kdx̃j + cj , j = 0, . . . , N − 1
−Kdx̃j , j = N, . . . ,∞ (18)

Hence, optimization over {ũj}N−1
j=0 can be replaced by optimization over the stacked correction vector {cj}N−1

j=0 .
Moreover, after N sampling times, it is desirable to have the state vector inside a terminal invariant set for the closed-loop
system. This terminal constraint will guarantee the stability of the nominal closed-loop system (Mayne et al., 2000).
Therefore, considering the translated sets X̃, Ũ and Õ∞, the constrained optimal control problem to be solved is given by

min
{cj}N−1

j=0

J (x̃0) = x̃T
N Px̃N +

N−1∑
j=0

(
x̃T

j Qdx̃j + 2x̃T
j Wdũj + ũT

j Rdũj

)
subject to:

x̃j+1 = (Φ− ΓKd) x̃j + Γcj , x̃N ∈ Õ∞
ũj = −Kdx̃j + cj , j = 0, . . . , N − 1

{ũj}N−1
j=0 ∈ Ũ

{x̃j}N−1
j=0 ∈ X̃

(19)

where x̃T
N Px̃N =

∑∞
j=N

(
x̃T

j Qdx̃j + 2x̃T
j Wdũj + ũT

j Rdũj

)
is the cost-to-go function and P is the terminal weight given

by the solution of the discrete-time Riccati equation

P = Qd + ΦT PΦ−
(
ΦT PΓ + Wd

)(
ΓT PΓ + Rd

)−1 (
ΓT PΦ + WT

d

)
(20)

The feedback gain Kd is given by

Kd =
(
ΓT PΓ + Rd

)−1 (
ΓT PΦ + WT

d

)
(21)

The solution of the problem expressed by Eq. (19) is possible predicting the state vector from the current discrete time
to N moves ahead. These prediction equations, the constraints formulation and the conversion of the cost function into a
quadratic programming problem can be found in the literature on MPC (Rossiter, 2003).
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2.3 Observer for offset-free tracking

In the previous sections perfect knowledge of the state and disturbance vectors was assumed. Because they are not
directly measured, an observer must be designed and employed. Consider the augmented plant model obtained from
rewriting Eq. (1) as

xak+1 = Φaxak
+ Γauk

yk = Eaxak

(22)

where xak
=
[
xT

k dT
k

]T
and

Φa =
[
Φ Γd

0 I

]
, Γa =

[
Γ
0

]
, Ea =

[
E 0

]
(23)

The proposed linear state/disturbance observer has the form

x̂ak+1 = Φax̂ak
+ Γauk + L (yk − Eax̂ak

) (24)

where the estimator gain matrix L is

L =
[

Lx

Ld

]
(25)

Maeder and Morari (2007) propose the following algorithm to construct an observer L.

1. Compute Lx such that Φ− LxE is stable and the pair
(
H̄Ea, Φ̄

)
is detectable, where

H̄ = H
[
E (I−Φ + ΓKd)−1 Lx + I

]
Φ̄ = Φa −

[
LT

x 0
]T Ea

(26)

2. Compute L̄d such that I− L̄dH̄E (I−Φ + LxE)−1 Γd is stable

3. Compute the following matrix

T =
[

I − (I−Φ + LxE)−1 Γd

0 I

]
(27)

4. Calculate the estimator gain L with

L =
[

Lx

0

]
+ T−1

[
0

L̄dH̄

]
(28)

The proposed algorithm allows to design Lx first and then the disturbance observer. Hence, the eigenvalues of Φ−LxE
(i.e. the state observer dynamics) are not affected by the disturbance observer dynamics. Also, this observer design allows
offset-free control despite the effects of disturbances and model uncertainty, assuming that no constraints are active at
steady state. As explained previously, this condition might not be observed when one or more actuators are jammed at a
fixed position. Then, the elimination of the offset error will strongly depend on the analytical redundancy (Shead et al.,
2008).

3. TRAJECTORY-TRACKING FAULT-TOLERANT FLIGHT CONTROL

The trajectory-tracking system implemented in the ATTAS ground simulator is presented in Fig. 2. The desired path
to be flown is defined by a sequence of waypoints in geodetic coordinates. The trajectory generator produces a time-
parametrized smoothed trajectory in cartesian coordinates (Almeida, 2008). Then, based on the present position of the
aircraft, vertical and lateral guidance are computed and sent to the autopilots.

The longitudinal autopilot uses the calibrated airspeed command and vertical guidance to manipulate the sum of left
and right power lever angles plat = plal +plar, and the elevator command δec . In the lateral autopilot the feasible target-
tracking model predictive control (FTT-MPC) technique was applied . The autopilot manipulates the aileron command
δac

, rudder command δrc
and the difference of left and right power lever angles plaa = plal − plar in order to track yaw

rate ψ̇c and lateral load factor ny .
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Figure 2. Trajectory-tracking fault-tolerant flight control

3.1 Controller design

The longitudinal autopilot was designed using single-input, single-output (SISO) techniques (Stevens and Lewis,
2003). The fault-tolerant lateral autopilot was constructed considering an ATTAS linear model obtained with calibrated
airspeed VCAS =145 kt, pressure altitude of 1,000 m, gear up and flaps 1 deg. The dynamics of the effectors and their
limitations are taken into consideration. Thus, the state vector is

xlat =
[
p r φ vb δa δr n1a

]T
(29)

where p is the roll rate (rad/s), r ∼= ψ̇ is the yaw rate (rad/s), φ is the bank angle (rad), vb is the lateral velocity component
in the body-fixed y-axis (m/s), δa is the aileron deflection (rad), δr is the rudder deflection (rad), and n1a

= n1l
−n1r

is the
asymmetrical fan speed, i.e. the difference of left and right fan speeds. The control vector is ulat =

[
δac

δrc
plaa

]T
,

which concatenates the aileron command (rad), rudder command (rad), and asymmetrical power lever angle (rad).
The performance output defined by Eq. (10) is zm =

[
p r φ vb

]T
, that is required to follow the transient behavior

specified by the model

Am =


−2.24 1.49 −0.868 −0.0364
−0.169 −0.765 −0.0253 0.0257

1.00 0.102 0 0
8.11 −77.4 9.60 −0.186

 (30)

where Am has eigenvalues
{
−1.7 −0.553± 1.55i −0.386

}
. It should be noted that no actuator dynamical mode is

required to follow a model, only the rigid-body aircraft lateral modes. The matrices Q and R of Eq. (15) were set as
Q = 1× 105I and

R =

1× 10−3 0 0
0 1× 10−3 0
0 0 10

 (31)

where the third diagonal term, related to the power lever command, was selected to give almost no usage of asymmetrical
thrust in the nominal (without faults) condition, but to provide proper power lever command allocation in case of fault of
aileron and/or rudder. The sampling period chosen was Ts = 0.035 s. After discretization of the dynamical system and
the weighting matrices, the following feedback gain was obtained

Kd =

 −0.42 0.013 −0.77 −0.0011 1.81 −0.0062 −0.0019
0.27 −1.8 0.18 0.013 −0.0038 1.7 −0.002
−0.0036 −0.031 −0.0088 −0.0002 0.049 0.079 0.14

 (32)

The target calculation problem assumes that the controlled variables are z =
[
ψ̇ ny

]T
and also that the full state is
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observed, which leads, with respect to Eq. (1), to E = I and

H =
[

0 1 0 0 0 0 0
0.0179 0.104 0 −0.0176 0 0.259 0

]
(33)

The weighting matrices of Eq. (3) were chosen as Qss = I and Rss = 1 × 10−10I. The disturbance model was
chosen with two variables and the related distribution matrix Γd was built taking the first and the third columns of Γ.
This (arbitrary) choice guarantees that the augmented system given by Eq. (23) is detectable. The observer gain L was
obtained from the proposed algorithm, where both Lx and L̄d were determined via LQR formulations.

The admissible sets related to the fault-tolerant control problem must be established. In the nominal conditions, the
set of admissible controls is defined on the basis of requirements and aforementioned reasons

−40◦ ≤plaa ≤ 40◦

−15% Ts ≤∆n1l,r
≤ 15% Ts

−15◦ ≤δac ≤ 15◦

−10◦ ≤δrc ≤ 10◦

(34)

Each fault condition is reflected into new constraints of the target calculator and the constrained regulator. The com-
putation of the related feasible target and terminal invariant sets is performed off-line. In this work, as failure case the
rudder jammed at −5◦ has been simulated. Therefore, the set XN is calculated for both nominal and failed condition
through available numerical techniques (Kvasnica et al., 2004). The slice of XN to compute the set XssN

is done on-line.
A similar procedure is adopted for the terminal invariant set of the constrained regulator (Almeida and Leissling, 2009).

The choice of the control horizon is driven by the computational capability of the flight control hardware. The proposed
technique guarantees feasibility of the constrained regulator problem, thus the value of N only affects how the demand is
filtered by the target calculator. For both nominal and fault conditions, a control horizon N = 2 has been defined.

4. GROUND SIMULATOR IMPLEMENTATION AND SIMULATION RESULTS

The proposed system was implemented in Simulink R© environment. The MPC constrained optimization problem was
solved through a quadratic programming solver. The active set method of Goldfarb and Idnani (Fletcher, 1987) was
converted into a S-function, which could be compiled for several target environments. After that, an executable file has
been built, using Real-Time Workshop R©, which could be tested using the ATTAS ground-based simulator. A detailed
description of this procedure and the interfaces of the experimental computer with the flight control system of the ground
simulator is given by Gestwa et al. (2003).

The ILS approach of runway 26L at Hannover airport (EDDV) was chosen to be simulated. The calibrated airspeed
was maintained constant at 145 KCAS. The circular path to smooth the transitions of waypoints is an inertially referenced
path with 3 deg/s of nominal turn rate. Fig. 3 shows the horizontal and vertical profiles obtained from simulation in both
cases (nominal and rudder failure), where the initial position of the aircraft has cartesian coordinates (0,0). There is no
significant difference between both trajectories.
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Figure 3. Horizontal and vertical views of the planned and simulated path

Figure 4 shows adequate performance of the lateral autopilot in all situations. The yaw rate demanded by the guidance
system, and zero lateral acceleration, were correctly followed by the fault-tolerant autopilot, even with a considerable
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range of operation of altitude. Figure 5 shows the corrections computed by the feasible target calculator with rudder fault,
generating admissible target state and control vectors. It is important to emphasize that, without such corrections, the
constrained regulation problem would be unfeasible.
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Figure 5. Corrections computed by the feasible target calculator in the fault scenario

The dynamical control allocation performed by the lateral autopilot is depicted in Fig. 6. Oscillations in the asym-
metrical fan speed occurred because of nonlinearities of the engine model. Nevertheless, the desired reconfigurability is
achieved through usage of asymmetrical thrust only in the condition of jammed rudder.

0 200 400 600 800
−10

0

10

δ a c (
de

g)

0 200 400 600 800
−6

−3

0

3

6

δ r c (
de

g)

0 200 400 600 800
−50

0

50

n 1 a (
%

)

Time (s)

0 200 400 600 800
−10

0

10

0 200 400 600 800
−6

−3

0

3

6

0 200 400 600 800
−50

0

50

Time (s)

Nominal (no failure) Rudder at −5 deg

Figure 6. Aileron / rudder commands and asymmetrical fan speed
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5. CONCLUSIONS

In this paper, a novel fault-tolerant model predictive controller is proposed. This controller ensures feasibility by
means of filtering the desired reference during the constrained target calculation. Thus, the usual way to enlarge the
domain of attraction of a MPC by increasing the control horizon is avoided, making the proposed controller adequate for
flight control systems with limited computational capability. Also, the constrained regulator of the controller is designed
to minimize a cost function which penalizes the deviation from a desired reference dynamical model. Simulation results
obtained from the ATTAS ground simulator showed proper control redistribution and reconfiguration, making use of
asymmetrical thrust only after the occurrence of a rudder fault.
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