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Abstract. This article presents the results concerning the estimation of the uncoupled linear lateral-directional forward 
flight derivatives of the "Twin Squirrel" AS355-F2 helicopter. The identification problem is solved in the time domain 
using the output error approach, in conjunction with both genetic and Levenberg-Marquardt optimization algorithms. 
A flight test compaing was performed and experimental data was obtained for this analysis. The helicopter linear 
equations of lateral-directional motion are used in order to identify the dimensional derivatives in level flight at 
5,000 ft and 80 kt. The maneuvers were specified in accordance with conventional flight test procedures, taking in 
account the limitations of the mathematical model and flight safety constraints. 
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1. INTRODUCTION 

 
System identification techniques applied to stability and control derivatives estimation of fixed and rotary wing 

aircrafts are well developed and commonly used in many research centers and aeronautical industries around the world, 
as shown, for instance, by Jategaonkar et al. (2004) and Wang and Iliff (2006). More specifically for helicopters, Hamel 
and Kaletka (1997) present a general vision of this aircraft system identification progress up to 1997 and Padfield 
(1996) describes a comprehensive flight dynamic theoretical model, flight qualities criteria development, flight test 
techniques and several results of his research in the United Kingdom. 

More recently, Tischler and Remple (2006) also describe the helicopter dynamic systems identification state-of-the-
art in their book “Aircraft and Rotorcraft System Identification”. In this reference work emphasis is given on 
engineering methods and interpretations of flight test results using a system identification software package in the 
frequency-domain, known as CIFER@ (Comprehensive Identification from Frequency Responses). In the frequency 
response methodology, accurate mathematical modeling of the aircraft starts with flight test data collected in the time 
domain. The reliability of the identified model is also proved by a time-domain verification method using different 
flight test data. 

All above related works use local optimization algorithms based on gradient method as Gauss-Newton and 
Levenberg-Marquadt search methods for finding a minimum of a function. Concerning global optimization algorithms 
and more specifically, genetic algorithms, they are used by Hajela and Lee (1995) in rotor blade design and by Wells et 
al. (1995) in the acoustic level reduction rotor design. Regarding helicopter system identification techniques, a few 
works utilize genetic algorithms in search and optimization. In this area, it can be cited Cruz et al. (2006, 2007) in the 
longitudinal mode system identification of the AS355-F2 helicopter (Twin Squirrel) and del Cerro et al. (2005) in the 
identification of a small unmanned helicopter model. 

This work deals with lateral-directional system identification of the AS355-F2 helicopter (Twin Squirrel), using the 
time-domain output-error approach combined with both genetic and Levenberg-Marquardt algorithm optimization. The 
rotorcraft identification methodology used in this work is the well-known Quad-M or M4V methodology, proposed by 
Hamel and Jategaonkar (1996) and shown schematically in Fig. 1. This methodology takes in account the main 
elements of rotorcraft system identification, including the rotorcraft excitation maneuvers, the data measurements, the 
mathematical models from the helicopter equations of motion and the parameter estimation methods through output-
error minimization. Finally, the identified rotorcraft model validation is done from the complimentary flight test data. 
Each one of these elements will be discussed on the following sections in order to clarify the utilized system 
identification methodology. 
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Figure 1. M4V output error system identification methodology - Hamel and Jategaonkar (1996) 
 

2. MANEUVERS 
 
The choice of the proper flight test maneuvers, by shaping the excitation signals, is very important to minimize the 

uncertainties in the parameter estimation procedures and to maximize the flight test data content. The optimization of 
the excitation signal can be realized from a priori knowledge of the initial dynamic parameters of interest. However, 
since there are no priori studies available for AS355-F2 helicopter, the maneuvers were specified applying conventional 
flight test procedures and taking into account flight safety constraints. Since this work focuses the determination of the 
lateral-directional flight derivatives at forward and level flight, special sequences of sharp-edged pulses known as the 
“3-2-1-1” using lateral cyclic and pedal inputs were used to excite the dutch-roll mode with 80 kt indicated airspeed and 
5,000 ft of pressure altitude. 

The identification procedure used a “3-2-1-1” sequence with both lateral cyclic and pedal inputs, while the 
validation procedure utilized two different sequences (one with lateral cyclic inputs and pedal fixed and vice versa). 

 
3. FLIGHT TEST DATA MEASUREMENTS 

 
The tested helicopter was equipped with an Aydin Vector Data Acquisition System (AVDAS), the ATD-800 digital 

recorder and a flight-test air data system, mounted on a nose boom, as depicted in Fig. 2. This system measures thirty-
five different parameters with a sampling rate from 18 to 72 Hz. Some of the data measurements are: fuel quantity from 
both tanks, nose boom static and dynamic pressures, external temperature, aerodynamic angle of attack and sideslip, 
roll, pitch and yaw rates (p, q and r, respectively), load factors, longitudinal and lateral attitudes (θ and ϕ), heading (ψ), 
collective, longitudinal and lateral cyclic and pedal input deflections (c, B, A and P, respectively). 

 

 
 

Figure 2. "Squirrel" AS355-F2 helicopter and installed nose boom 
 

Finally, the Earth axis speeds (u0, v0 and w0) are gotten by means of the Z12 Differential Global Positioning System 
(DGPS), from Astech, whose antenna is fixed in the vertical fin upper. The DGPS and AVDAS data synchronization is 
made by means of an event simultaneous register. Still, the DGPS data is represented with the same AVDAS data 
cadence by means of the linear interpolation. The wind direction and intensity are obtained comparing the body axis 
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speeds with the aerodynamic speed from the flight-test air data system, mounted on a nose boom, at trim conditions. 
Consequently, the body axis speeds (u, v and w) is easily calculated adding wind vector to the Earth axis speeds. 

 
4. HELICOPTER LATERAL-DIRECTIONAL MODEL 

 
The helicopter equations of motion, deduced from Newton second law for translational and rotational movements, 

are given by Prouty (1989) and Cooke and Fitzpatrick (2002). 
This work deals only with the stability and control derivatives estimation of the lateral-directional mode. Then, the 

uncoupled dynamic equations are given as: 
 

 rupwvmsincosmgY    (1) 
 

   qrIIpqrIpIL zzyyzxxx    (2) 
 

   pqIIqrpIrIN yyxxzxzz    (3) 
 

where Y represents the lateral external force, L and N are, respectively, the roll and yaw moments and I( ) corresponds to 
the moments and product of inertia of a rotating body. The kinematic relation for the roll rate about the Y-axis is written 
as: 

 
 tgcosrtgsinqp  (4) 

 
These equations are clearly non-linear, but a meaningful analysis can be realized by converting into linear 

differential equations, considering only the small-perturbations around trimmed equilibrium points (represented by 
subscript 0) in the rotorcraft flight envelop. In matrix notation, the linearized lateral-directional model is given by: 
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 (5) 

 
where  represents the variation from initial trim condition, Y( ) is the dimensional lateral force stability and control 
derivatives, and L´( ) and N´( ) corresponds to the dimensional roll and yaw moment stability and control primed 
derivatives, respectively. 

It should be observed that Eq. (5) presents lateral cyclic and pedal input deflections instead of the main rotor lateral 
pitch and tail rotor collective angles, respectively, because the tested helicopter instrumentation doesn’t measure these 
parameters. The AS355-F2 control system is hydraulically actuated and its transfer function is modeled only as a time 
delay. Therefore, Eq. (5) may also be written as: 

 
  biasxtuBxAx    (6) 

 
where biasx  is the constant and unknown bias vector that was included in the state-space equation in order to provide a 
first-order correction for the random errors due non-measurements inputs such as turbulences and noise, and τ is the 
time-delay associated with unmodeled dynamics, such as actuator dynamics, control linkages and transient rotor 
dynamics. 

The observation vector (y) is given by Eq. (7), where x is the state vector and yref is a constant vector included in 
order to compute offsets in steady state due sensor misalignments and errors and several other influences: 

 

refyxy   (7) 
 
Therefore, taking into account yref, there are twenty-five parameters to be identified as shown by the following 

vector of unknown parameters: 
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5. PARAMETER ESTIMATION METHOD 
 
5.1. Output error approach 
 

The output error approach was used to estimate the vector of unknown parameters presented in Eq. (8). As shown in 
Fig. 1, the basic principle of this methodology is to minimize the error between the in-flight measured responses and the 
estimated results of the identified mathematical model submitted to the observed inputs. This minimization process is 
made as function of the dynamic model parameters, such as aerodynamic derivatives, sensor bias and sensitivities.  

Therefore, a cost function is defined which measures the matching of the real and simulated data, when a certain 
group of adjustable parameters (e.g. the coefficients of the proposed dynamic model) are varied. An iterative search 
method is employed to vary this group of parameters such as to minimize the adopted cost function, usually taken as a 
quadratic function of the predicted matching error.  

Let  f  be the cost function, and consider ld as being the vector of parameters to be estimated, u  the system input 
vector, y the observation vector, and let ysim(xi; ld 1... ld M),  where i = 1,..., N,  be the output of the proposed model for 
a determined group of parameters ld. Then, the problem becomes how to determine the vector of adjustable parameters 
ld that minimizes the cost function given by f  =  f(ysim(xi; ld 1... ld M),y). 

There are many methods to calculate the cost function, including the maximum likelihood (MLE) and the nonlinear 
least-squares. The least-squares optimization procedure is basically a minimum square error adjustment given by: 
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On the other hand, the MLE method takes into account the measurement noise variance to weight the system outputs 

during the optimization procedure through the measurements noise covariance matrix, FF. Then, suppose that each 
output value, yi, has an associated random measurement error with a normal distribution around the “true” value ysim, the 
conditional probability density function p((yi -ysim)|ld) is written by: 
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where FF is the covariance matrix given for:  
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From the conditional probability density function equation, it can be obtained a modified cost function, applying the 

negative of the natural log on both sides:  
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Equation (12) shows that the parameter identification problem becomes a quadratic function minimization problem, 

since the maximization of the likelihood function is equivalent to minimize a weighted least square equation. Taking 
into account that the covariance matrix is constant, the cost function can be simplified to the form: 
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The determination of a parameter vector ld that minimize the cost function given by Eq. (13) is equivalent to find a 

parameter vector that maximize the probability of measuring, yi = (yi)sim, i =1,..., N. Comparing Eq. (9) and (13), it can 
be concluded that the least squares cost function, except for the multiplication factor, is given by Eq. (13), replacing FF 
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by the identity matrix. Therefore, in order to implement the weigthed least-square cost function, it is enough to replace 
FF by a diagonal matrix to consider different weights to each state. In this work, it was developed a Matlab® program to 
minimize the cost function defined by both weighted least square and MLE errors. 

 
5.2. Genetic algorithm optimization 
 

Classic methods to solve the maximum likelihood minimization problem are Levenberg-Marquadt, Gauss-Newton, 
Newton-Raphson, among others. This article proposes a new approach by using the Matlab® Genetic Algorithm (GA) 
and the Direct Search Toolbox in order to estimate the helicopter lateral-directional derivatives combined with the 
Levenberg-Marquardt optimization algorithm, as shown schematically in Fig. 3. In case of there is no priori information 
available, this methodology states that it should be applied initially the genetic algorithm and after that a classic method 
in order to solve Eq. (13). This is especially important since that the parameters estimation procedure becomes less 
sensitive to the initial values. Besides, another interesting characteristic is that the solution obtained by the genetic 
algorithm is globally optimal. 

 

 
 

Figure 3. Combined genetic and Levenberg-Marquadt optimization algorithms approach 
 

Based on biological evolution principles, the genetic algorithms are structured random search techniques for 
optimization. Therefore, they utilize concepts such as population size, individual characterization and processes related 
to selection, reproduction, crossover and mutation of the individuals. 

The GA optimization process starts by creating a matrix, representing an initial population IP, with each line formed 
by randomly chosen individual with fixed-length character strings (nld), as shown below, 
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 (14) 

 
where nld represents a twenty-five components vector as shown in Eq. (8). After simulations with different number of 
individuals (nind), this work uses two hundred individuals at each generation due to adequate computation time and 
convergence of the fitness function. 

The following step is to assign a fitness value to each individual in the population using a fitness measure, 
represented by the cost function of Eq. (13). A new population is created by applying three genetic operations, depicted 
in Fig. 4, to each individual string of the current generation. The individuals generated by the genetic processes are: 

- Elite: formed by individuals in the current generation those are copied to the new generation based on their fitness 
properties; 

- Crossover: new individuals, created by genetically recombining two substrings, using the crossover operation at a 
randomly chosen crossover point. The newly created individual inherits the characteristics from the original chosen 
pair; and 



2009 Brazilian Symposium on Aerospace Eng. & Applications 3rd CTA-DLR Workshop on Data Analysis & Flight Control 
Copyright © 2009 by AAB September 14-16, 2009, S. J. Campos, SP, Brazil 

 
 

 

- Mutation: new individuals are created by randomly changing a few strings chosen at random positions in the 
original string. 

 

 
 

Figure 4. Reproduction Instruments 
 
The GA iteratively performs the above steps until a termination criterion is satisfied. In this work, the maximum 

number of generations was used for this purpose. 
Concerning the GA implementation in the Matlab® environment, each current generation is composed of 2 elite 

individuals, with the rest of the population formed by crossover and mutation processes in the proportion of 80% and 
20%, respectively. 

The functions that create the initial population and produce mutation children were developed from a uniform 
distribution of random numbers, generated on a specified interval: ± 100% of the B0-105 derivatives presented by 
Heffley et al. (1979). The output function is evaluated over a subdomain of individuals that attends the limits associated 
with bounds and stability constraints, since the aerodynamic parameters should be on the cited interval and the dutch-
roll dynamics is known to be stable on this helicopter. 

 
5.2. Levenberg-Marquardt optimization algorithm 

 
After genetic search verification, this article also proposes the Levenberg-Marquardt optimization algorithm 

presented by Mulder et al. (1999) and Press et al. (1988). Therefore, the cost function given by Eq. (13) may be 
minimized iteratively according to: 
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where  j

ld̂  represents the estimate vector at jth iteration, (j-1) is the scalar chosen in accordance with the algorithm 
proposed by Press et al. (1988) for a reduced value of f (
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) and (j-1) is based on information about the cost function 
acquired at previous iterations. Numerically, (j-1) is often obtained using the values of the first- and the second-order 
gradients of f (
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) with respect to parameters vector ld, according to: 
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A difficulty with the Eq. (16) is that Hessian matrix f ( ld


) may not be positive definite and thus not point in a 

“downhill” direction. Mulder et al. (1999) propose to replace the f ( ld


) by its expectation R, known as the Fisher 
information matrix that can be shown to be non-negative definite. Therefore, the Eq. (15) becomes: 
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The first-order gradient of the likelihood function in Eq. (17) can be derived from Eq. (13) as: 
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Applying the following equivalency presented by Goodwin and Payne (1977) 
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the Fisher information matrix may be obtained as: 
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The iteration starts with initial estimates of all unknown parameters and computes parameter updates according to 

Eq. (17) based on Eq. (18) and (20). Assuming initially a modest value for , as 0.001, on Eq. (17), the cost function is 
evaluate and if its value is greater than or equal to the last value, so  is increased by a factor of 10 and the program 
returns to evaluate the cost function until to obtain a value less than the last value. Also necessary is a condition for 
stopping, so all these procedures repeat until that the cost function has been reached at least five significant digits equals 
to the last value. 
 
6. PARAMETER ESTIMATION RESULTS 
 

The 3-2-1-1 excitation maneuver using lateral cyclic and pedal inputs was implemented in the flight test, under a 
nominal flight operation point of 80 kt and 5,000 ft. Figure 5 shows the measured deflection inputs and the measured 
and simulated responses of lateral body axis speed v, roll rate p, lateral attitude ϕ and yaw rate r.  

 

 
 

Figure 5. Results at 80 kt and 5,000 ft 
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The correlation coefficient between measured (y) and simulated data (ysim), defined as the normalized cross-
covariance function 

simyy , as defined by Bendat and Piersol (2000): 
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can be used to estimated how well the estimated signals can reproduce the measured data. If the correlation coefficient 
is close to unity, one may conclude that the estimation algorithm can provide a good fit to the experimental data, but on 
other hand, if the coefficient is close to 0, the estimation was poor. 

The fitting index, represented by the normalized correlation coefficient, is depicted in Fig. 6. In this figure, each 
group of parameters represents the fitting index of the estimated outputs (v, p, ϕ and r), obtained with three different 
types of maneuver at same airspeed and altitude: (a) 3-2-1-1 sequence with both lateral cyclic and pedal inputs used to 
estimate the flight derivatives; (b) second 3-2-1-1 sequence with lateral cyclic inputs and pedal fixed; and (c) third 3-2-
1-1 sequence with pedal inputs and lateral cyclic fixed. The (b) and (c) groups of fitting index correspond to 
complementary flight data used only to validate the estimated parameters. 

 

 
 

Figure 6. Correlation function coefficient for each measured output 
 
Considering the assumptions and limitations of the theoretical helicopter dynamic model, it can be concluded that 

the obtained results are satisfactory, reaching fitting coefficients for the observed response in excess of 60% for all of 
the cases, and superior to 80% for most cases, despite the lack of a priori knowledge about the stability and control 
derivatives of the vehicle. This conclusion is confirmed analyzing the time response of all parameters (even the lower 
coefficients don’t have amplitude discrepancies greater than 5 kt and 5º for v and ϕ parameters, respectively) and the 
Cramér-Rao Lower Bound (CRLB). It expresses a lower bound on the variance of each parameter estimated and, as 
presented by Tischler and Remple (2006), normalized CRLB lower than 20% suggests a satisfactory estimation. 

As all flight derivatives identified are dimensional, Tab. 1 presents the mass and inertia parameters used. 
 

Table 1. AS 355-F2 inertia and mass data 
 

Weight (kg) Ixx (kg.m2) Iyy (kg.m2) Izz (kg.m2) Ixz (kg.m2) 
2200 3.5191e+003 1.1996e+004 8.6216e+003 -3.7007e+003 

 
The estimated aerodynamic derivatives of the AS355-F2 lateral-directional motion at 80 kt and 5,000 ft and the 

respective CRLB are given in Tab. 2. 
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Table 2. Stability and control derivatives of the uncoupled lateral-directional mode at 80 kt and 5,000 ft 

 
Flight Derivatives Identified Parameters CRLB Normalized CRLB (%) 

Yv [1/s] -0,2218 0,0071 3,2 
Yp [m/s.rad] -0,8051 0,1573 19,5 
Yr [m/s.rad] -1,6897 0,1396 8,3 
L´v [rad/m.s] -0,0508 0,0006 1,2 

L´p [1/s] -2,6332 0,0517 2,0 
L´r [1/s] 0,2696 0,0253 9,4 

N´v [rad/m.s] 0,0442 0,0004 0,9 
N´p [1/s] -0,6053 0,0341 5,6 
N´r [1/s] -1,2201 0,017 1,4 

YA [m/s2.cm] 0,8580 0,0864 10,1 
YP [m/s2.cm] -0,8089 0,0571 7,1 

L´A [rad/s2.cm] 0,4121 0,007 1,7 
L´P [rad/s2.cm] -0,0216 0,0035 16,2 
N´A [rad/s2.cm] 0,0674 0,0056 8,3 
N´P [rad/s2.cm] 0,2821 0,0025 0,9 

 
The time delay τ, the bias vector biasx  and the constant vector yref were also identified. Their values are written in 

Tab. 3. The time delay, as shown by Eq. (6), was identified as the shift of the outputs measurements that minimizes the 
cost function given by Eq. (13). 

 
Table 3. Other Identified Parameters at 80 kt and 5,000 ft 

 
Parameter Identified Value 
v bias [m/s] 0,1408 
p bias [rad/s] 0,1960 
 bias [rad] 0,0063 

r bias [rad/s] 0,0030 
vref [m/s] -0,1037 

pref [rad/s] -0,0034 
ϕref [rad] -0,0034 
rref [rad/s] -0,0029 

τA [s] 0,0100 
τP [s] 0,0100 

 
7. CONCLUDING REMARKS 
 

From the methodology M4V, it was possible to obtain the uncoupled lateral-directional stability and control 
derivatives in forward flight of the AS355-F2 helicopter at 80 kt and 5000 ft. 

The results showed that the genetic and Levenberg-Marquardt combined optimization algorithms are powerful tools 
for parameter estimation problems by the output-error method, especially, when the level of information regarding the 
studied system is reduced. As stated at previous sections, the adopted methodology initially estimates the flight 
derivatives using the genetic optimization algorithm and then, when the cost function tends to converge, the parameters 
are improved using Levenberg-Marquardt algorithm. This process joins the mean advantages of each algorithm: 

 genetic optimization algorithm: guides the parameters along the right path, despite the lack of a priori knowledge 
about the stability and control derivatives of the vehicle, avoiding divergences and results without physical meaning, 
since GA facilitates the introduction of constraints; 

 Levenberg-Marquardt optimization algorithm: guide the parameters to a precise local minimum and also requires 
less computational time. 

Concerning flight test maneuvers, the 3-2-1-1 sequence was suitable to identify the uncoupled lateral-directional 
stability and control derivatives at 80 kt and 5,000 ft. 

However, the helicopter dynamics has non-linear terms, with parameters that may vary abruptly with the 
modification of the flight conditions, or with helicopter configurations (large flap hinge-offsets), which require a larger 
number of degrees-of-freedom in the model to properly introduce the rotorcraft dynamics. Thus, in spite of satisfactory 



2009 Brazilian Symposium on Aerospace Eng. & Applications 3rd CTA-DLR Workshop on Data Analysis & Flight Control 
Copyright © 2009 by AAB September 14-16, 2009, S. J. Campos, SP, Brazil 

 
 

 

results obtained with linear models for the lateral-directional dynamic mode, more complex models will be required to 
improve the curve fitting procedures. This is especially relevant to obtain level D flight simulator models and to develop 
control system strategies that depend on a comprehensive knowledge of the rotor and fuselage dynamic interaction in 
the entire flight envelope (weight, CG, altitude and airspeed) of the rotorcraft. 

For the next studies, the following points will be taken in consideration:  
 A more complex model will be proposed to include both longitudinal and lateral-directional dynamics modes; 
 A improved model with at least 9 DOF in order to compute the coning angle and first harmonic coefficients of 

lateral and longitudinal blade flapping with respect to shaft; 
 Application of different optimization techniques, such as Extended Kalman Filter (EKF), in conjunction with the 

maximum likelihood estimation problem; and 
 Application of optimization techniques to design maneuvers in order to maximize the level of information 

contained in the flight test data and, consequently, to make the stability and control derivatives estimation more robust 
and precise. 
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