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Abstract. This work presents a model for the design of ascent trajectory of launch vehicles, aiming optimization of
orbit injection conditions. The contextual considerations of launch mission, and corresponding development which
lead to the settlement of required conditions, are included. In order to theoretically support the development in this
work, and focusing the necessary for such, some Calculus of Variations concepts are disclosed. Then, a model has been
developed with support on gradient-type technique. Pertinent issues in iterative optimization methods, like
convergence, have been addressed. Based on the aforementioned developed model, a software prototype has been
implemented, as to allow the assessment of the model. The tests have been run within an already available and certified
software which simulates the dynamics and flight attributions of a target launch vehicle. This ssimulation arrangement
provides appropriate conditions for a fair assessment of the trajectory design model. Presenting collected results from
simulation tests, it can be verified the good performance of the developed model. It could provide successful orbit
injection, even in face of divergences from expected values on flight parameters. The software prototype has been
implemented so that it can be used in the fashion of preflight trajectory design application, as well as in the fashion of
an onboard guidance task.
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1. INTRODUCTION

The considered launch vehicle is configured witlidspropellant stages. Hence, once burning startsaich stage, it
proceeds without interruption for a fixed time ina, till final burnout, providing a thrust whosariable magnitude is
prescribed. In the ascent stage, control over #igcle is done through thrust direction, which ¢@mplished by
means of movable nozzles. The last, deploy stagmeant for complementing kinetic conditions fobibinjection,
with fixed direction thrust. Thus, the satellitedl orbit is already determined at the startingainsof the deploy stage,
when the vehicle should be stabilized in a deteedhidongitudinal attitude, so that it can achievdathwthe
complementation provided by last stage, the appatgpvelocity for orbit injection.

Flight is ballistic between end of the previouseadcand start of the deploy stage, beyond atmospBeiring this
phase, a pointing algorithm (Leite Filho and Pint898) evaluates ongoing flight conditions and deiees what
should be that longitudinal attitude for the depdtgge, as well the ignition instant of the stdgethe possible satellite
orbit. Then the vehicle is put in the calculatetitide, without interference in its Keplerian trejery. Since this
trajectory is Keplerian, that ongoing flight corndits evaluated by the pointing algorithm are alyeadttled at the
beginning of the trajectory, that is, at the endhaf ascent stage. So, for a desired satellite, dhig vehicle must reach
certain conditions at the end of this ascent stage.

This work presents a model for the ascent trajgaesign, stressing the fulfillment of its requirithl conditions.
The model is developed in a basis of Calculus afafians, taking a gradient-type method as optitdramethod.

2. THEORETICAL BASIS
2.1. The optimal control problem

Let be considered a dynamic system with fixedahiitate, fixed initial and final instants, and aohded state and
control spaces. The system state is made up oftector of state variablex(t) = (x ) - x,()" OR", and the system

control is made up of then-vector of control variabletu)=(u,t) - u,t) OR™. The following set of state
differential equations define the system dynamics:

X =1 (x,u) 1)

wheref : R"xR™ - R". It is assumed that functiofi§) and their partial derivative#i/ox; , i, j = 1, ...,n, are defined and
continuous oIR"xR™. Let be considered a given time intervigltf], and a given initial state:
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X(ty) =X, (2)

The control problem under consideration has thelirement of achieving some final stéext,), such that the
following g (g<n) final equality conditions are satisfied:

Px(t,) = (P x(ty) - Pt ) =0 (3)

wherew:R" . RY. It is assumed that functiot4(.) and their partial derivatives?/ox , k=1, ...,q, j =1, ...,n, are

defined and continuous cR". Besides the fulfillment of the above required &gy conditions, it is established an
optimization criterion (Bryson Jr. and Ho, 1975) fthe phase trajectory over the time intentgltf] and for the final
state at;, wich is to minimize the performance index:

te
Pl = KoG(x(t;)) + K, [ LOx().u(®)at 4)

o

where G:R" - R and L:R"xR™ - R. It is assumed that functio®.), L(.), and partial derivative@G/ox;, dL/ox; , i =
1, ...,n, are continuoukK andK_ are positive weighting parameters.
The optimization problem is to determine an optie@htrolu*(t) for tnjt,,t,], capable of transferring the system,

by means of the dynamics in Eq. (1), from initi@ts atty (Eq. (2)), to a final state &tso that final conditions (Eq. (3))
are satisfied, and minimizing the performance inéex (4). The corresponding phase trajectory isotkeh optimal
trajectory,x*(t). This variational problem with such performanodex Eq. (4) is called a Bolza problem. When the
index does not contain component function on bogndalues like the above functioB, but only the integral
component, the problem is called a Lagrange problimen the index does not contain integral compblika the
above with functiork, but only function on boundary values, the probismalled a Mayer problem (Mclintyre, 1968).

2.2. Variational problem transfor mations

The foregoing Bolza problem may be transformed atdayer problem, by defining an auxiliary stateiafale x,.1
so that Xpq = fra(X,U) = L(X,U), with X41(to) =0 thus yieldingk .G(x(t,))+ K x,.(t;) as the performance index

to minimize, which configures a Mayer problem. Thowing definitions for then+1 state equations ame-1 initial
conditions incorporate the new auxiliary state afalex,.

x =f(X,u) %)
X(to) = %o (6)

Also, depending upon the numerical method chosesoliee the problem, it may be worthwhile to get bfdfinal
conditions as formulated in Eq. (3), by incorpargtthem into the performance index, regarding timathie numerical
solution process, such final conditions are to ditésBed to some precision level. Introducing thpositive weighting
parameter&y, ..., Ky, the new performance index to minimize becomes:

BX(t;)) = KgGX(ts ) + K Xnu (ts) +ZE=1(KW (7, (xt ) ) )

Now, the equivalent optimization problem is enutenlaas to determine an optimal conted{t) for tojt,,t, ],

capable of transferring the system, by means oflylmamics in Eq. (5), from initial state tgt(Eq. (6)), to a final state
att;, in such a way to minimize the performance indgx ).

2.3. Gradient method

This also called steepest descent method (McInfy@88) is used in this work to solve the above gigelcoptimal
control problem. Introducing the adjoimt{1)-vectori) = (A, t) - A, A1) OR™ of Lagrange multipliers for the

constraints in Eq. (5), and the Hamiltonian funetig, »,u) =27 (x,u), we form the augmented performance index:

J:¢+tjiT (?—f_)dt:gmtjf(iT?—H)dt (8)

to to
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In Eq. (8), since(X —f) is null, minimizingd is equivalent to minimizing. As necessary conditions for optimality,

the adjoint vectof. must satisfy the following adjoint differential @ations, known as Euler-Lagrange equations, and
final transversality conditions, respectively:

a(t)=-HT 9)
Mte) =-0)y, (10)

Partial derivatives®,,Hy,H,,, are considered row vectors. Le(t) be a initial estimate for control driving the

system from the given initial statetgto a final state a, but producing a non-optimal vald@®) for the performance
index. Expanding Eq. (8) in Taylor series ab#{uf), and truncating after the first order terms, ket

& :(‘P; +XT)t:h df((tf)—tj[(Hi+XT)&+Hud,|}jt (12)

to

Using Egs. (9) and (10) on Eq. (11), yelds:

t
& =~ [ H,dudt (12)

to

Now, asJ(u’) is not minimal, we can achieve a minor vallfg’) = J(u% + 6J with a negative’J, by means of
appropriateju(t), to < t < t. So, to minimizel, we minimizedJ (steepest descent). But, we are limited by thealiity
assumption in the Taylor series expansion and atime, so we restriciu(t), requiring that:

t
[autdt=K? (13)

fo

where K is some small positive quantity, chosen to quwnitiife step in control correction. Hence, we hawe th
optimization problem of minimizingJ, Eq. (12), subject to the constraint &u(t), Eq. (13). In Calculus of Variations,
this problem is configured as a isoperimetric peab(Golfetto, 2004), whose solution is:

ty 2
&= K[jHuzdtJ HT (14)

to

Y2
From Egs. (12) and (14), the corresponding chamgeiformance index ig; _ _K[thfdt] .
to

The process to find a solution is iterative; thlugaof parametekK may be refined from any iteration to the next, as
consequence of some convergence evaluation. A datignal procedure for the method is as follows:

step 0) Establish and record a initial estim&{#), t, < t <t;, for the control.

step 1) Starting with initial state in Eq. (6),6gtate the system state fragrto t;, using Eq. (5) within the effective
control. Record the phase trajectix().

step 2) Equation (3) may be computed at this pdfithe final equality constraints are satisfieddahis is the only
issue that really matters, the process may behfist this point, with currently established cohlreing the solution.
step 3) With Eq. (10), compute the final valijt, ). Starting with these values, integrate backwaaimt; to t,, the

adjoint equations using Eq. (9), and the non—negatitegrandHf, to obtaintj'H 24 - RecordH,(t).
to
step 4) I]‘}szt 0o to the desired precision level, the mininddlas been reached, the currently effective coigrol
fo
the solution and the process is finished. Yet, sother criteria may be used to finish or not thecess.

step 5) Using Eq. (14) with recordéti(t), computedu(t), and add it to the effective control, gettingeamcontrol
estimate for a new iteration, restarting from step
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3. TRAJECTORY DESIGN
For details on the subject in subsections 3.1 aAdr8fer to (Nepomuceno, 2006).
3.1. Satellite deploy requirements

We consider the purpose of deploying a satelliteefrestrial circular orbit of radiu8s, hence its velocity must be
orthogonal to its geocentric positional radius hade the magnitude,, = (u/Rg.)'?, whereu=398601,2 K<,

The pointing algorithm (Leite Filho and Pinto, 199&es an impulsive model, also used here, for theirtoy in
deploy stage: the nominal orbital velocity at the injection point results from the vector itidd Vp+dVp, whereVp
is the velocity at the end of ballistic phase @i is the increment provided by the burning of depdtage ; is the
trajectory anglef; is the pointing angle. Circumferential and radiainponents of the above vector addition should be:

Vp, cosB, +Vp cosb, =Vep = (1/Rep )2 (15)

V,, sinBp + &y sind, =0 (16)

With the purpose of suppressifg yet assuring both above conditions keep holdirgget:

V2 - VgV c0Sfp +VE —NE =0 (17)
cosfp < +1=Vp cosfp + Ny Vg 20 (18)
cosb 2 -1=Vj cosfy —Vp —Vg <0 (19)

Equations (17), (18) and (19) are equivalent to. EfjS) and (16). Transgression of Eq. (19) meaesvithicle
getting to the beginning of deploy stage in sueltesthat, even with pointing opposite to the delsosbital orientation,
it would not be possible to brake it sufficienttydchieve the specific velocity for the orbit. Assng that such adverse
state is physically unattainable, Eq. (19) is taltemmplicitly satisfied and will not be consideiteetreafter.

3.2. Ascent stage end requirements
In the foregoing conditions, variabl&4, and fp refer to the starting of deploy stage. I[Rtbe the geocentric
distance V; the velocity angs; the trajectory angle, at the end of ascent stAgahe trajectory between end of ascent

stage and start of deploy stage is Keplerian, filoeenconservation of angular momentum and of enevgyget:

ReVp cosfp = R;V; cosf¢ (20)
VE/[2-VE =VZ/2- /R (21)

From Egs. (20), (21), (17) and (18), and doing emment substitutions of variabl& andp; for variablesV,; and
V¢, considering that,; = V; sing;, Vi = Vicod:, Vi = Vi + V4, result:

1 (Ry Vit Vet ) = 2R Vg + 2/ Ry Vi —Vf -V + V5 =0 (22)
RV /Rep + &p ~Vgp 20 (23)

where o, =V4, /Ry - Considering the tridimensional Cartesian spadinel@ by coordinate®, V, and V., Eq. (22)

defines a surface, target set. In the course oh#itent stage, vehicle’s state varialiRé3, V,(t) andV, (t) describe a
phase trajectory in the above space, determinedehicle’s state equations, and with initial poietted by initial
conditionsRy, Vyo and V. Trajectory design is to quantify control, pitchgée 6(t), so that end pointR, Vi, V) of
trajectory lies on target surface. To mitigate tipancies due to occurrence of end point befoadter interception of
phase trajectory with target surface, such intdroepshould be tangential, which means orthogondlétween state
equations vector and gradient on the surface is¢h#,; (R, V.1, V), that is, null scalar product between the vectors

¥, = (dRy /dt,dV /dt,dVy /ct)o (0%, /OR; ,0%1/dVy ,0%; /aN )= 0 (24)
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Beyond atmosphere, active forces are thrust (camseqacceleration of magnitudae, with radial and
circumferential components = a sird anda. = a co)) and gravity (acceleratiop/R?). Hence, state equations are:

dR/dt =V, ; dV,/dt =asind-u/R?+V2/R; dV,/dt=acosd-V,V,/R (25)
Effectuating the scalar product in Eq. (24), wetpetadditional condition for the end of ascengsta
¥, (R Vi Ve .05 ) =V tand; +Vy —agpR; =0 (26)
3.3. Ascent trajectory problem formulation

The state variables for this model are geocenistadceR(t), radial velocityV,(t), circumferential velocity/, (t)
and pitch angleg(t), all local but geo-inertially referred. Thrustcateration of magnituda, with its radial and
circumferential component anda., is also time-variable. However, it is not neceggaking it as a formal state
variable, because its variation is modeled throaidimear approximation of predicted thrust and nmgflow, so that
its values at any instant of ascent stage may feetti calculated, independently of integrationeTdngular velocity
wy(t), temporal variation of(t), is the formal control variable for the modelofr Egs. (25), state equations are:

\4
asing- u/R? +V2 /R (27)
acosd-V,V,/R
wa

x=(R V, V, @ =

From Egs. (22) and (26), the equality final corui are given by:

(7 [2000R Ve 2R VG VG -+ 03 Ty 28)
Vi tand; +Vy — wepR; 0

Performance index is conveniently chosen and itémization is set as criterion for solution:

9]
Pl = —K, R Vy + ij'(w,j/z)dt (29)

to

whereK,, andK_, are positive weighting parameters. Stressingribeease of the produBVy, we stress the fulfillment
of inequality final condition in Eq. (23). The i@l component in the performance index is a chaioging energy
consumption reduction and also to improve convergetapability. As set forth in subsection 2.2, wedirte the

auxiliary state variablg,, resulting in the following reformulated sets tdte equations and initial conditions:

VI’
asing-u/R?+V2/R (30)
x=(R V, V. & i) =| acoss-v,V,/R
wa
/2
X)) =(Ry Vio Veo 6 O) (31)

We also incorporate the equality final conditiog, (28), into performance index, Eq. (29), whittally becomes:
@ = —KnRiVes + Kol o+ (Kya/2JPF +(Kyp/2)27 (32)

whereKy;, andKy, are positive weighting parameters. Thus, we haeedptimal control problem of determining a
control w,(t) and corresponding trajectory, fragto t;, with dynamics expressed in Eq. (30), initial citiods in Eq.
(31), and the performance index in Eq. (32).

3.4. Ascent trajectory problem solution with the gradient method

Using Eq. (30) and introducing the adjoint veciorthe Hamiltonian functiok is formed:
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H( X, @,) = AV, +4,(asind -/ R? +V2/R)+ Ay (acosd —V,V, /R)+ Ay, ~ A 2 (33)
The adjoint differential equations and final tramsality conditions are, respectively:

VoAV, —AV,)/R? - 21, /R

— A+ AV /R
w=lh A g Ay A =-HI= (- 245V, + AV, /R (34)
a(A;sind - A, cosb)
0
Vet 0 LT LT
_ 0 0 lPlVr, WZVr, (35)
M) = =5, = Kol Ry [=Kg| 0| =Ky Pave, |~ Koo Yo,
0 0 0 V20,
0 1 0 0

where the partial derivatives &f and¥, are:

" :(Wlx):[z(wsavd ~U[RY) -y 2AweR; ~Vy) 0 0

. - W tand; 1 Ve / (cosé’f )2 0

The partial derivative of the Hamiltonidhwith respect tavw,, and the iterative control adjustmeit, are:

Hwa :A4+/]5wa (36)
tg 2

3w, = K[IHf,adtJ Ho, (37)
to

Thus, the general procedure described at the ensubgection 2.3 may be applied to find a solut@this ascent
trajectory design problem.

3.5. Control law after target attaining instant

As approached in subsection 3.2, the target atigiimstant is that at which phase trajectory shantiekcept target
surface. Even with Eq. (26) directing this interti@p to be tangential, depending on the amountvehtual remaining
burning propellant, continuing phase trajectory lmiget significantly away from target surface, withrresponding
change in the attainable orbital radius. To avhid, twe impose the continuing phase trajectoryetepkadherent to the
target surface. To keep Eq. (26) holding at anytaeie get from¥, the following reference pitch angle, as a function
of ongoingR(t), V. (t), V(t), which is to drive trajectory after target atiagpinstant:

8 = arctaf(wepR-V,)/V, ) (38)
4. SSIMULATIONS

Simulation cases have been performed with a softywestotype, built for assessment tests of thedtajy design
model. The prototype runs concurrently with anotieilable software which simulates a target laurethicle. Results
from a mission case with designed orbit altitlitls = 750 Km are presented here. To confront thesdtsewsith those
obtained from the same mission case, but runniagréjectory design software as described in (Nemamo, 2006),
which is an application of neighboring extremaldime, each figure here shows plotted results froth.b

In simulation tests, we may consider attainableutér orbit radius as a variallRy, corresponding to an altitudts,
with value to be determined by the values of theeptariables R, Vi, V, at the end of stage. This way, we consider
Eq. (22) as a third-degree equation on variglgte. Within the mathematical solutions to the equatmme has physical

meaning for our case, and it has been used tahsadttainable circular orbit altitudds along the ending course of the
stage. Moreover, from Egs. (15) and (20), withcosg, =V, , We also plot the predicted pointing angiealong the

ending course of the ascent stage, as determintgtthsalues of other variables, including the abRye
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4.1. Designed trajectories

The outputs presented here refer to the desigragdctory without any “in-flight” feedback along thawn
trajectory, that is, produced only with the avdidalata at the beginning of the trajectory. Figurghows the designed
evolution of the formal control variable. FiguresBows the state variables designed evolution. dtiténes of what
should be the attainable circular orbit altitudel associated predicted pointing angle, as if bursaddenly occurs at
the corresponding instant in the designed trajgctame shown in Fig. 3.

Variation of vehicle's pitch angle Trajectory: 1st calculated (start of stage)

wa (/s) orbit altitude: Hs Target attaining instant: start of thrust tail
25—~

i—neighboring extremals method
15— i i P i ]

‘ascent
L : stage:

e oo felapsec
B0 65 70 75(s)

Figure 1. Control evolution in designed trajectory

Vehicle's geocentric distance Trajectory: 1st calculated (start of stage) Vehicle's radial speed Trajectory: 1st calculated (start of stage)
R (Km) Design orbit altitude: Hsp=750 Km  Target attaining instant: start of thrust tail ¥r(Km/s)  Design orbit altitude: Hsp=750 Km  Target attaining instant: start of thrust tail
6700 ! i 0 ! 6.0 1 H : H
‘ ‘ thrudt tajl- ‘ ‘ ‘ ‘ thrudt tajl-
; : : ; — orbit radiys d ; : : ; — orbit radiys d
6675 - - 5.5 N
—first order gradient method —first order gradient method
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6650 5.0
6625 45
6600 40
6575 35
550 3.0
6525 25
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[
I
6500 2.0
St
RN B I
6475 15
scent scent
tage: tage:
6450 lapsec 1.0 lapsec
0 15 20 25 0 5 40 45 50 85 60 K5 70 75(s) 0 15 20 25 0 5 40 45 50 85 60 K5 70 75(s)
Vehicle's circumferential speed Trajectory: 1st calculated (start of stage) Vehicle's pitch angle, to local herizontal Trajectory: 1st calculated (start of stage)
¥e (Kmis)  Design orbit altitude: Hsp=750 Km  Target attaining instant: start of thrust tail Theta () Design orbit altitude: Hsp=760 Km  Target attaining instant: start of thrust tail
6.0 " ' ] 90 ; ; :
: : : -thrust tajl- : : : -thrust tajl-
| | | i orbit radiys | | | i orbit radiys
5.
B —first order gradient method v —first order gradient method
—neighboring extremals method —neighboring extremals method
5.0 70
45 60
a0 50
35 10 ot
_
\\ //
3.0 30
L
25 0
2.0 10
15 0
scent scent
tage: tage:
1.0 lapsec  —11r lapsec
0 15 20 25 0 5 40 45 50 65 B0 K5 70 75(s) 0 15 20 25 0 5 40 45 50 65 B0 K5 70 75(s)

Figure 2. State evolution in designed trajectory
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Afttainable circular orbit altitude Trajectory: 1st calculated (start of stage) Predicted pointing angle, circular orbit  Trajectory: 1st calculated (start of stage)

Hs(Km)  Design orbit altitude: Hsp=750 Km  Target attaining instant: start of thrust tail ThetaD(")  Design orbit altitude: Hsp=750 Km  Target attaining instant: start of thrust tail

- : : : — i i hudtti— - — — — - — - — i —i e hdtti— - — — — — —

| | | —> i orbit radius | | | —> i orbit radius
o —first order gradient method “ —first order gradient method
—neighboring extremals method, —neighboring extremals method,
800 10
775 35
\\
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600 unoul 0 urnout

48 49 B0 51 52 B3 B4 B5 BF 57 BB B9 B0 b1 62  63(s) B8 49 80 51 62 B3 B4 K5 BE 67 KA B8 6O Bl 62  B3(s)

Figure 3. Designed trajectory: attainable circalebit altitude and predicted pointing angle

We verify in Fig. 3 that the attainable circulabibraltitude Hg(t) assumes the designed valdg at the target
attaining instant (due to conditidt, Eq. (22)); at this instant the curi(t) intercepts tangentially the horizontal line
HsHs (due to conditior?,, Eq. (26)); and after thaltls(t) remains with the valuklss (due to control law Eq. (38)).
The time instant corresponding to initial pointaaftlined curve for attainable altitudds(t), as for predicted pointing
angledp(t), is the starting instant it is achieved feastipitif later circular orbit injection, if burnout ddenly occurs.

4.2. Guided trajectories

The outputs presented here refer to the guidedctiajy as performed by the launch vehicle simulatderacting
with the prototype for the trajectory design modehich fulfills a guidance task. Figure 4 shows therformed
evolution of the formal control variable. FiguresBows the state variables performed evolution. diténes of what
should be the attainable circular orbit altitudel associated predicted pointing angle, as if bursaddenly occurs at
the corresponding instant in the performed trajgctare in Fig. 6.

With respect to Fig. (6), refer to what have beemied out for Fig. (3), within designed trajecexiin foregoing
subsection, here applied to guided trajectories.

Variation of vehicle's pitch angle Trajectory: measured and guided
Wﬂ(lﬁ) Desngn orbit altitude: Hsp 750 Km Target aﬂalnlng instant: start of thrust tail

—flrst order gradient method
—nelghbonng e:dremals method

iascent
stage:

Figure 4. Control evolution in guided trajectory
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Vehicle's geocentric distance Trajectory: measured and guided Vehicle's radial speed Trajectory: measured and guided
R (Km) Design orbit altitude: Hsp=7%0 Km  Target attaining instant: start of thrust tail ¥r(Km/s)  Design orbit altitude: Hsp=750 Km  Target attaining instant: start of thrust tail
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Figure 5. State evolution in guided trajectory

Afttainable circular orbit altitude Trajectory: measured and guided Predicted pointing angle, circular orbit  Trajectory: measured and guided
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Figure 6. Guided trajectory: attainable circulebibaltitude and predicted pointing angle
5. CONCLUSION

Trajectory design and related optimization issuesy rhe performed by means of many available teclasiqu
especially for the numerical solving. It is usuaktassify the solution methods as either diredhdirect; and what we
have presented here uses a technique, first orddiegt, classified as a direct method. Results1feosimulation test
have been shown along with the results from anaigrfor the same mission case, but running adrajy design
software applying the neighboring extremals techajcclassified as indirect method. We observe tiiiat resulting
optimal solutions are very similar to each oth@spte precision criteria are not the same. Sinaulaests have shown
good results, although we have met some difficsiltiéith the gradient method, in tuning the weightparameters and
the step in control corrections; whereas initiatisg of values for adjoint variables and converggehad represented
main difficulties with the neighboring extremalstimed. These are issues for continuing research.
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