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Abstract. Through the averaged equations we revisit theoretical and numerical aspects of the strong resonance that 
increases the eccentricity and affects the stability of the disposed objects of GPS and Galileo Systems. A simple view of 
the phase space shows that the resonance that causes this increase does not depend on the semi-major axis of the 
disposed object. This is easily identified considering a simple expansion of the disturbing function, where the Sun can 
be assumed in circular orbit.  Here we also present a complete expansion of first order in the eccentricity of the Sun. 
Since the resonance does not depend on the altitude of the satellite, usual strategies of changing semi-major axes 
(raising perigee), do not solve the problem. Following Gick and Chao (2001), in this work we search for a set of initial 
conditions such that the deactivated satellites or upper-stages remain at least for 250 years without penetrating in the 
orbits of the operational satellites of the constellation. In the case that Moon’s perturbation is not significant, we can 
identify, very clearly in the phase space, the regions where eccentricity reaches maximum and minimum values so that 
any risk of collision can be avoided. Based on this, we numerically found the (ω, Ω) values that keep decommissioned 
objects for at least 250 years. In particular, for the GALILEO case, the theoretical results predicted in the averaged 
system are in good agreement with numerical results. The initial inclination of the Moon’s orbit shows interesting 
differences. 
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1. INTRODUCTION 
 

Broadly speaking, the GPS, GLONASS and GALILEO systems are satellite constellations which were designed 
mainly for positioning and navigation purposes. The first members of GPS (block I),  originally were designed to have 
inclination of 63.4 degrees with respect to the equator, distributed in three orbital planes, each one separated from 120 
degrees in the longitude of the node. The altitude is 20,200 km. The GLONASS members are similar, with slightly 
lower altitude (19,100 km, period = 11:15 h). The European GALILEO system is still in construction, and the 
inclination of the satellites will be 55, 56 degrees, with altitude 23,615 km. All the three systems have rather similar 
altitudes.  In order to avoid risks of collision and following American Govern instructions about debris mitigation, there 
are some recommendations that the disposal satellites and upper-stages should be deposited at least 500 km above or 
below the semi-synchronous orbit. 

In a constellation of a navigation system, the members must be kept under precise requirements of functionality. 
However after some time, they have to be deactivated, since some level of these requirements cannot be fulfilled for 
long time. The destination of these deactivated objects is a problem, since they must be moved into some disposal 
regions in order to preclude collisions with operational members of the constellation. While these vehicles can be 
designed “a priori” to transport additional propellant (at some non-negligible cost) to be used in some planned 
maneuvers to insert them in the disposal regions, the same is not true for the upper-stage. In some cases (block IIF of 
GPS system), due to design restrictions, this upper-stage cannot be easily guided to the disposal region. It must perform 
several operations after the satellite is injected in the constellation. All these operations change its final parameters, 
Jenkin and Gick (2006). Since the inclination of these vehicles are near to 55-56 degrees, the eccentricity, suffer strong 
variations and even an initially circular orbit, can become highly eccentric, so that they can cross very easily the orbit of 
the operational satellites.  What is interesting and also problematic is the fact that the rate of growing the eccentricity is 
very sensitive to the initial parameters of the disposal orbit (eccentricity, argument of the perigee, and longitude of the 
node). In this work, based on the theoretical framework, we present a set of initial conditions (ω, Ω) for GPS and 
GALILEO systems such that the disposed objects can remain at the least 250 years with small eccentricity (0.01 or 
0.02) without causing any risk to the operational satellites. 

The above strategy of keeping small eccentricity can generate some additional problem: after some time, the 
disposed vehicles will accumulate and a graveyard of these objects will be created. Therefore, a risk of collisions 
amongst themselves is a crucial problem, since the products of these extra collisions are almost untrackable fragments 
that may offer more risks to the operational elements of the constellation. 

According to Jenkin and Gick (2005), the strategy in the opposite direction, that is, exploiting the growth of the 
eccentricity in order to diluting disposal orbit collision risk, has some interesting points to be considered: the percentage 
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of disposed vehicles that will re-enter in the atmosphere can be increased. Another advantage observed is: although 
eccentricity growth strategy increases the collision risk in the constellation, in some cases this risk can be reversed with 
proper choice of the initial disposal eccentricity. 

In this sense, we also started the investigation of some initial conditions that can cause large increase of the 
eccentricity, for a minimum time interval, considering different initial inclination of the Moon’s orbit. 
 
2. METHODS 
 
2.1. Disturbing Function of the Sun 
       
     As we want to highlight some theoretical aspects, it is instructive to write the main disturbing forces in terms of the 
orbital elements.   

In this section we obtain the averaged disturbing function of the Sun. Following the classical procedure, Brouwer 
and Clemence (1961), in a reference center fixed in the Earth equator, the disturbing function of the Sun is: 

 

�⨀ = ���⨀ � �
	
��
�⨀	 − 
�∙
�⨀

	
�⨀	��,                                                                                                                                       (1) 

 
where �⨀ is the mass of the Sun, �� is the gravitational constant, ��, ��⨀ are position vector of the satellite and the Sun 
respectively. 

Expanding Eq. (1) in powers of ���/��⨀� up to order 2 we have: 
 

�⨀ = ���⨀��

⨀� �
�

��� �− �
� + �

� cos�� ��.                                                                                                                         (2) 

 
S is the angular distance between the satellite and the Sun. We use the classical notation: a, e, I, l, ω, Ω, for semi-

major axis, eccentricity, inclination, argument of the perigee and longitude of the node. The same set is used for the 
Sun’s elements, adding the index ⨀. 

For the moment we consider Sun in a circular orbit. From the geometry of the problem, and using classical relations 
of the two body problem we get: 

 

cos� � = �
" �1 + cos�$���1 − cos�$⨀�� cos�% + & + %⨀ + &⨀ + Ω − Ω⨀�  

            + �
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            + �
" �1 + cos�$���1 + cos�$⨀�� cos�% + & − %⨀ − &⨀ + Ω − Ω⨀� 

            + �
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            + �
� sin�$� sin�$⨀� *cos�% + & − %⨀ − &⨀� − cos�% + & + %⨀ + &⨀�+,                                                       (3) 

 
or in a compact form: 
 cos� � = ,- + ./ + 01 + 23 + 45,                                                                                                                          (4) 

 

where: , = �
" �1 + cos�$���1 − cos�$⨀��; 

       - = cos�% + & + %⨀ + &⨀ + Ω − Ω⨀�; 

      . = �
" �1 − cos�$���1 + cos�$⨀��; 

      / = cos�% + & + %⨀ + &⨀ − Ω + Ω⨀� ; 
      0 = �

" �1 + cos�$���1 + cos�$⨀��; 

      1 = cos�% + & − %⨀ − &⨀ + Ω − Ω⨀�; 

     2 = �
" �1 − cos�$���1 − cos�$⨀��; 

     3 = cos�% + & − %⨀ − &⨀ − Ω + Ω⨀�; 

     4 = �
� sin�$� sin�$⨀�; 

      5 = cos�% + & − %⨀ − &⨀� − cos�% + & + %⨀ + &⨀�; 
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f, %⨀: true anomaly of the satellite and of the Sun. 
The average is obtained from 
 

7�⨀8 = �
�9 : �⨀3;�9

<                                                                                                                                                      (5) 
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where ? = 1 + �
� 5�, B = F

� 5�. 

 
After a second and similar average with respect to the mean anomaly of the Sun, we get: 
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2.2. Oblateness Disturbing Function 
 
For the oblateness, we have: 
 

R� = ���STU�

� V� ��

� − �
� DJK��W��                                                                                                                                  (8) 

 
where RP, J2 and β are: equatorial radius of the planet, oblateness coefficient and latitude of the satellite, respectively. 

The average with respect to the mean anomaly of the satellite gives: 
 

�X� = 7R�8 = �
" K�V��H��31CD��$� − 1��1 − 5����

�,                                                                                                     (9) 

 
where n is the mean motion of the satellite. 
 
2.3. Equations of the motion 

 
Therefore the averaged equations are given through the disturbing function: 
 � = �G⨀ + �X�                                                                                                                                                             (10) 
 

The equations for the osculating elements (exact system), including Moon are: 
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d e,                                                                                                                                 (12) 

 

?Xf = −���V��H� > �g
�
b − �F

�
c�g

d e,                                                                                                                                 (13) 

 

?Xi = −���V��H� > jc
�
b − �F

�
c�

de,                                                                                                                                   (14) 

 
where the components of  ?_�X� are:   ?X`, ?Xf, ?Xi  and M, m, ML are the masses of the planet, satellite and Moon and ��, ��⨀ 

and ��\ are the position vector of the satellite, Sun and Moon respectively.  
 
2.4. Some special resonances 

 
For close satellites, usually the oblateness is the dominant part. In this case, the main frequencies of the system are 

given by: 
 

&k ≈ �mX�TU�
"�����n��� �51CD��$� − 1�,                                                                                                                                (15) 

 

Ωk ≈ − �mX�TU�
������n��� 1CD�$�.                                                                                                                                           (16) 

 
The ratio of these two frequencies is: 
 
Ωk
pk ≈  �qrs�t�

��Fqrs��t� = �.                                                                                                                                             (17) 

 
Note that for k = integer we have the special resonances which do not depend on the semi-major axis. These 

resonances usually affect the eccentricity.  For � = −2 we have 2&k + Lk ≈ 0 for I = 56.06° and I = 110.99°. For I = 
63.4°, we have &k ≈ 0. 
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3. EFFECTS OF vwk + xk  AND wk  RESONANCES 
 

For the moment let us consider only �⨀∗ + �X�: Fig. 1 and Fig. 2, show the effects of both resonances on the 
eccentricity and on the resonant angles. Note that an initial small eccentricity reaches a significant increase. 

 
 
 

 
 
Figure 1. Time evolution of the eccentricity (left) and the critical angle (right). Initial conditions: a = 4.805 RT (30,647 
km), e = 0.005, I = 56.06° and other elements equal to zero. 
 
 

 
 

Figure 2. Time evolution of the eccentricity (left) and the critical angle (right). Initial conditions: a = 4.7 RT (≈ 29,977 
km), e = 0.005, I = 63.4° and other elements equal to zero. 

 
Let us pay more attention to the case I = 56.06° which is the inclination of the members of the Galileo constellation. 

For this inclination the dominant term in the �⨀∗  is 1CD�2& + Ω− Ω⨀�. Neglecting the remaining terms of �⨀∗ , the 
Hamiltonian of the problem is: 

 

y = �X� + ���⨀��
�
⨀� >H

M �1 − 31CD��$� − 31CD��$⨀� + 91CD��$�1CD��$⨀��A  
   A− �

" BDJK�$�DJK�$⨀�N1 + 1CD�$�O1CD�$⨀�1CD�2& + Ω− Ω⨀�e,                                                                            (18) 

 

Let us take z = {����| + }�-, ~ = z√1 − 5�, � = ~1CD�$�, l, ω, Ω  the set of the Delaunay variables with ω, Ω 
instead g, h. After a trivial Mathieu canonical transformation, Lanczos (1970): 
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�, �� = ℎ, ?� = � − �

�,                                                                                                              (19) 

 
then we have: 
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�H� � 1CD�$⨀�1CD�����,                                                                              (20) 
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��X� = �
" K�V��H� �3 �H�ZH���

"H�� − 1� �1 − \��"H��
\� ���

�
.                                                                                                       (21) 

 
In these variables, this is a one degree of freedom problem, whose dynamics is very similar to the very well known 
Lidov-Kozai resonance. In Fig. 3, we consider an initial eccentricity e0 = 0.005 and semi-major axis a = 4.805 RT 
(30,647 km). This figure is very instructive: note that in the bottom part there is a large region where the satellite 
remains some finite time with very small eccentricity. These are the exactly region we are looking for. It corresponds to 
the region where 2& + L ≈ 0. On the other hand, we have the counterpart of this situation at the top of the figure: very 
high eccentricity, which occurs again for 2& + L ≈ 0. We can separate these two configurations and have a clear view 
of these two cases. Only to confirm our reasoning, let us integrate the problem in Cartesian coordinates, using Eq. (11). 
We also have to decrease the effect of the Moon’s perturbation since in this analysis we considered only ��⨀ and ��X�. To 
do that, we consider convenient value for the semi-major axis. Figure 4 (initial conditions: a = 3.5 RT (≈ 22323 km), e 
= 0.005, I = 56.06° and other elements equal to zero; Moon inclination IL = 18.28) shows clearly that the minimum of 
eccentricity occurs when 2& + L ≈ 0 is crossed in the descendent direction, while maximum occurs for increasing 
direction. It is worth noting that if the semi-major axis is high, then the effect of the Moon cannot be neglected, so that 
the problem is no more a one degree of freedom problem. In this case the search of the (&, L) pair such that eccentricity 
remains small, must be done integrating the complete equations of the motion as given in Eq. (11). 
 

 
 
 
 
 
 

  
Figure 3. Level curves of Hamiltonian, showing the 
eccentricity variation vs. resonant angle.  

 
Figure 4. Time evolution of the eccentricity (top) and the 
critical angle (bottom) for a disposal GPS satellite. Note 
that the minimum of the eccentricity occurs when 2ω + Ω is 
crossing zero in descendent direction while maximum 
occurs when 2ω + Ω is crossing zero, but in increasing 
direction. 

 
3. (w, x) CONDITIONS FOR GALILEO CASE 
 

In this section we integrate the osculating elements of a disposal satellite of the Galileo system under the effect of 
the Sun, Moon and the oblateness. As we said before, we take 500 km above of the nominal altitude of the constellation. 
The initial elements are fixed to a = 4.805RT (30,647 km), e = 0.005, l = 0° and I = 56.06°. We consider two cases for 
the Moon’s inclination  I = 18.28° and 28.58°. We show that the initial value of the inclination is important as shown in 
Figs. 5 and 6. In these figures we show the pair (&, L) such that the disposal object remains at least 250 years with 
eccentricity smaller than 0.01, so that there is no risk of collision with any member of the constellation. The black 
region corresponds to initial conditions such that the satellite remains at least 250 years with maximum eccentricity less 
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than 0.01. In the green region the maximum eccentricity is less than 0.02. The two straight lines represent the exact 
condition 2ω + Ω = kπ  (in particular we only plot the case k = 0). Note that, in special, the black dots (Fig. 5) are 
formed in the places predicted form the previous theoretical model. For the remain figures, the black dots are slightly 
shifted (upward) from the line 2ω + Ω = 0. We believe that this is caused by the strong perturbation of the Moon. Fig. 7 
shows the time evolution of the eccentricity for integration whose initial conditions are obtained from Fig. 5 (small 
square in the bottom). As expected, the eccentricity remains very low, while if we take (&, L) outside the marked 
regions in Fig. 5 or 6, a significant increase is verified as shown in Fig. 8. The initial (&, L) used in this case correspond 
to the star given in Fig. 5. 

 
 

  
 
Figure 5. Black dots: represent (ω, Ω ) values such that a 
satellite with a = 30,647 km remains at least 250 years 
with eMAX ≤ 0.01. Green dots: the same, but eMAX ≤ 0.02. 
Blue dots: curve satisfying 2ω + Ω = 0. Moon’s 
inclination: IL = 18.28°. Note that most of the “stable” 
(black dots) (ω, Ω ) points satisfy 2ω + Ω = 0, 2π with Ω 
≈ 0, ω = π. 

 
Figure 6. Same of Fig. 5, but now IL = 28.58°. 

 

 
 
Figure 7. Time evolution of the eccentricity (left) and the critical angle (right). Initial conditions: a = 4.805 RT, e = 
0.005, I = 56.06°. Initial (&, L): (24°, 0°) – black, (23°, 2°) – red, (18°, 8°) – blue. These initial conditions were 
extracted from the red square shown in Fig. 5. IL = 18.28°. 
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Figure 8. The time evolution of the eccentricity (left) and the critical angle (right). Initial conditions: a = 4.805 RT 
(30,647 km), e = 0.005, I = 56.06°, ω = 90°, Ω = 180°. This initial condition is marked by red star in Fig. 5. 
 
4. (w, x) CONDITIONS FOR GPS CASE 
 

This time we consider the GPS system. Again we consider I = 18.28 and I = 28.58 for the Moon’s inclination. As 
before the importance of the Moon’s inclination is very clear. 
 

  
Figure 9. Same of Fig. 5, but now a = 26,060 km. Figure 10. Same of Fig. 9, but now IL = 28.58°. 
 
5. CONCLUSION 
 

With the averaged equations we clearly showed the dynamics of the 2& + L resonance. The reason of the increase 
of the eccentricity is essentially due to this resonance which does not depend on the value of the semi-major axis. 
Therefore, any change of the semi-major axes (raising the perigee) of the decommissioned object will not remove from 
the resonance. After showing the existence of some initial conditions in the (&, L) domain where the eccentricity can 
remain very small for a simplified model, we used the complete set of equations to search this pair in (&, L) plane. The 
importance of the Moon’s inclination becomes very clear as shown in Figs. 5, 6, 9, 10. We obtained these initial values 
for GALILEO and GPS systems. For completeness, we also derived a first order averaged system in the eccentricity of 
the third body. Several additional resonances appear although their effect seems to be not so relevant for the navigation 
system. The search of the (&, L) pair for the maximum increase of the eccentricity can be done very easily following the 
same procedure we used for small eccentricity. For completeness, in the disturbing function of the geopotential we also 
investigated the contribution of terms coming from J22, J32 and J33. We intend to show the corresponding Figures 9 and 
10 in a separated paper including the second strategy of exploiting the increase the eccentricity. 

 
6. ACKNOWLEDGEMENTS 
 

The authors thank CNPQ, FAPESP and FUNDUNESP. 
 
7. REFERENCES 
 
Brouwer, D. and Clemence, G., 1961, “Methods of Celestial Mechanics”. Academic Press, New York. 
Gick, R.A. and Chao, C.C., 2001, “GPS Disposal Orbit Stability and Sensitivity Study”, Advances in the Astronomical 

Sciences, vol.108, pp. 2005-2018. 

Jenkin, A.B. and  Gick, R.A., 2005, “Dilution  of Disposal  Orbit  Collision  for the Medium  Earth  Orbit  Constellations”, 



2009 Brazilian Symposium on Aerospace Eng. & Applications 3rd CTA-DLR Workshop on Data Analysis & Flight Control 
Copyright © 2009 by AAB September 14-16, 2009, S. J. Campos, SP, Brazil 
 

The  Astron.  Journal 126, pp. 398-429. 
Jenkin, A.B. and  Gick, R.A., 2006, “Collision   Risk   Posed   to   the   Global Positioning System by Disposed Upper 

Stages”. Journal of Spacecraft and Rockets vol.43, No. 6, pp. 1412-1418. 
Lanczos, C., 1970, “The Variational Principles of Mechanics”. Fourth Edition – Univ. Toronto Press. 
Rossi, A., 2008, “Resonant dynamics of Medium Earth Orbits: space debris issues”. Celestial Mechanics and Dynamical 

Astronomy, Volume 100, Issue 4, pp.267-286. 
Yokoyama, T., 1999, “Dynamics of some fictitious satellite of Venus and Mars”. Planetary and Space Science, vol. 47, 

Issue 1, pp. 619-627. 
Yokoyama, T., 2002, “Possible effects of secular resonances in Phobos and Triton”, Planetary  and  Space  Science,  vol.  

50, Issue 1, pp. 63-77. 
 
8. RESPONSIBILITY NOTICE 

 
The authors are the only responsible for the material included in this paper. 
 

9. APPENDIX 
 

Here we give the complete expression of the averaged disturbing function up to first order in eccentricity of the third 
body. 
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" .�B1CD�2& + ;⨀ + 2&⨀ − 2Ω+ 2Ω⨀� 

      + j
" .�B1CD�2& + 3;⨀ + 2&⨀ − 2Ω + 2Ω⨀� 

      + j
" 0�B1CD�2& − 3;⨀ − 2&⨀ + 2Ω− 2Ω⨀� 

      + j
" 0�B1CD�2& − ;⨀ − 2&⨀ + 2Ω − 2Ω⨀� 

      + j
" 2�B1CD�2& − 3;⨀ − 2&⨀ − 2Ω + 2Ω⨀� 

      + j
" 2�B1CD�2& − ;⨀ − 2&⨀ − 2Ω + 2Ω⨀� 

      + j
" B�4� + 202�1CD�2& − 3;⨀ − 2&⨀� 

      + j
" B�4� + 202�1CD�2& − ;⨀ − 2&⨀� 

      + j
" B�4� + 2,.�1CD�2& + ;⨀ + 2&⨀� 

      + j
" B�4� + 2,.�1CD�2& + 3;⨀ + 2&⨀� 

      + j
� B�−4� + ,2 + .0�1CD�;⨀ − 2&� 

      + j
� B�−4� + ,2 + .0�1CD�;⨀ + 2&� 

      + j
� ?�−4� + ,0 + .2�1CD�;⨀ + 2&⨀� 

      + j
� ?�−4� + ,0 + .2�1CD�3;⨀ + 2&⨀� 

      + j
� ?�,. + 02�1CD�;⨀ − 2Ω + 2Ω⨀� 

      + j
� ?�,. + 02�1CD�;⨀ + 2Ω − 2Ω⨀� 

      + j
� ,0B1CD�;⨀ − 2& − 2Ω + 2Ω⨀� 
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      + j
� ,0B1CD�;⨀ + 2& + 2Ω − 2Ω⨀� 

      + j
� ,2?1CD�;⨀ + 2&⨀ + 2Ω− 2Ω⨀� 

      + j
� ,2?1CD�3;⨀ + 2&⨀ + 2Ω− 2Ω⨀� 

      + j
� 4?�, − 2�1CD�;⨀ + 2&⨀ + Ω− Ω⨀� 

      + j
� 4?�, − 2�1CD�3;⨀ + 2&⨀ + Ω− Ω⨀� 

      + j
� 4?�−, − . + 0 + 2�1CD�;⨀ − Ω+ Ω⨀� 

      + j
� 4?�−, − . + 0 + 2�1CD�;⨀ + Ω− Ω⨀� 

      + j
� 4B�, − 0�1CD�;⨀ − 2& − Ω +Ω⨀� 

      + j
� 4B�, − 0�1CD�;⨀ + 2& + Ω −Ω⨀� 

      − j
� ,4B1CD�2& + ;⨀ + 2&⨀ +Ω − Ω⨀� 

      − j
� ,4B1CD�2& + 3;⨀ + 2&⨀ + Ω− Ω⨀� 

      + j
� .0?1CD�;⨀ + 2&⨀ − 2Ω+ 2Ω⨀� 

      + j
� .0?1CD�3;⨀ + 2&⨀ − 2Ω+ 2Ω⨀� 

      + j
� .2B1CD�;⨀ − 2& + 2Ω − 2Ω⨀� 

      + j
� .2B1CD�;⨀ + 2& − 2Ω + 2Ω⨀� 

      + j
� 4?�. − 0�1CD�;⨀ + 2&⨀ − Ω +Ω⨀� 

      + j
� 4?�. − 0�1CD�3;⨀ + 2&⨀ − Ω +Ω⨀� 

      + j
� 4B�. − 2�1CD�;⨀ − 2& + Ω −Ω⨀� 

      + j
� 4B�. − 2�1CD�;⨀ + 2& − Ω +Ω⨀� 

      − j
� .4B1CD�;⨀ + 2& + 2&⨀ −Ω + Ω⨀� 

      − j
� .4B1CD�3;⨀ + 2& + 2&⨀ − Ω+ Ω⨀� 

      + j
� 04B1CD�2& − 3 ;⨀ − 2&⨀ + Ω− Ω⨀� 

      + j
� 04B1CD�2& −  ;⨀ − 2&⨀ + Ω− Ω⨀� 

      + j
� 24B1CD�2& − 3 ;⨀ − 2&⨀ − Ω+ Ω⨀� 

      + j
� 24BA1CD�2& −  ;⨀ − 2&⨀ − Ω+ Ω⨀�+ 


