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Abstract. It is well known that lunar satellites in polar orbits suffer a high increase on the eccentricity due to the  
gravitational perturbation of the Earth. That effect is a natural consequence of the Lidov-Kozai resonance. The final  
fate of such satellites is the collision with the Moon. Therefore, the control of the orbital eccentricity leads to the  
control of the satellite's lifetime. In the present work we study this problem and introduce an approach in order to  
keep the orbital eccentricity of the satellite at low values. The whole work was made considering two systems: the 3-
body  problem,  Moon-Earth-satellite  and  the  4-body  problem,  Moon-Earth-Sun-satellite.  First,  we  simulated  the  
systems considering a satellite with initial eccentricity  equals to 0.0001 and a range of  initial  altitudes between  
100km and 5000km. In such simulations we followed the evolution of the satellite's eccentricity. We also obtained an  
empirical expression for the length of time needed to occur the collision with the Moon as a function of the initial  
altitude. The results found for the 3-body model were not significantly different from those found for the 4-body  
model. Secondly, using low thrust propulsion, we introduced a correction of the eccentricity every time it reached the  
value 0.05. These simulations were made considering a set of different thrust values, from 0.1N up to 0.4N which can  
be obtained by using Hall Plasma Thrusters. In each run we measured the length of time, needed to correct the  
eccentricity value (from e = 0.04  to e = 0.05). From these results we obtained empirical expressions of  this time as a  
function of the initial altitude and as a function of the thrust value.

Keywords: lunar polar orbit, kozai resonance, low thrusters propulsions

1. INTRODUCTION 

Recently,  several  nations presented plans to reach the Moon. Satellites have been launched and many more are 
planned for following years (see for instance Foing & Ehrenfreund (2008). The expectations are that in the near future 
there will be a lunar base. The lunar poles are particularly of interest since seems to be where water can be found. 
Therefore, long living satellites in polar lunar orbits will be needed. It is well known that lunar satellites in polar orbits 
suffer  a  strong gravitational  perturbation  from the Earth.  That  effect  is  a  natural  consequence  of  the Lidov-Kozai 
resonance. 

It is well known that the Lidov-Kozai resonance introduces equilibrium configurations. In the case of lunar polar 
orbits  disturbed by the Earth's  gravitational  field,  this can be used as an advantage to implement constellations of 
satellites with elliptic highly inclined orbits (Ely (2005); Ely & Lieb (2006)). On the other hand it causes instability for 
near  circular  highly  inclined  orbits.  Wytrzyszczak  et  al.  (2007)  studied  the  regular  and  chaotic  motion  of 
geosynchronous  satellites  disturbed  by the  Moon's  gravitational  field.  They  found that  the  chaotic  nature  of  high 
inclination satellites is caused due to the significant eccentricity growth caused by the Lidov-Kozai resonance. 

Similarly, the final fate of polar lunar near circular satellites is the collision with the Moon. Therefore, the control of 
the orbital eccentricity leads to the control of the satellite's lifetime. 

In this paper we purpose the control of the eccentricity, using a electrical thruster, similar of that is in development 
at  the  University  of  Brasília.   Electric  propulsion is  basically  a  technique  of  space  propulsion  which  evolves  the 
conversion of electrical power into the kinetic power or thrust of the exhaust beam of ionized particles. The ability to 
obtain high exaust velocities with ionized particles enables plasma thrusters o perform high specific impulse mission in 
space (Ferreira, 2008). The main goal of the thruster that is being developed at the University of Brasília is the use of a  
permanent magnet,  saving energy during the mission. Preliminary results in the laboratory show that is possible to 
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obtain more than 100mN with this technology. Inspired on this thruster project, in this work, we assume a constant 
exhaust velocity, and we can control the switch of the thruster during the mission.

In the present work we study this problem and introduce an approach in order to keep the orbital eccentricity of the 
satellite at low values. The approach is based on the use of low thrust propulsion in order to introduced a correction of 
the eccentricity.

In the next section we introduce the Lidov-Kozai resonance. In section 3 we show the evolution of the eccentricities 
form our numerical integrations. The approach proposed to control the eccentricity and its application is presented in 
section 3. In the final section we present our final comments.

2.THE LIDOV-KOZAI RESONANCE

Lidov (1961), studying the dynamics of artificial satellites, and Kozai (1962), studying the dynamics of asteroids, 
independently discovered what is know called the  Lidov-Kozai resonance. Following, we introduce the basic features 
of such resonance.
    In this section we addopted a simple model (see for example Ely (2005)) for the orbital evolution of an artificial  
satellite disturbed by a third body in circular equatorial orbit around the primary. It was obtained by double averaging 
the system (Prado, 2003) taking into account the disturbing function expanded in Legendre polynomials up to second 
order and the eccentricity of the disturbing body also up to the second order. The disturbing function of the problem is 
averaged independently over the mean longitudes of the satellite and the third body. The standard definition for average 
used in this work is:

〈F 〉= 1
2π∫0

2π F dM (1)

where M is the mean anomaly, which is proportional to the time. 
Following  such  approach  one  can  find  the  double  averaged  disturbing  function  given  by  (see  for  example 

Vashkov'yak & Teslenko, 2007):

R= 3G m1m2a
2

16a E
2 2 e2−sin2 i e2 5cos2−3sin 2i 

(2)

where a, e, ω and i are respectively the semi major axis, eccentricity, argument of pericenter and inclination, G  is the 
gravitational constant, aE  is the semi-major axis of the Earth with respect to the Moon, m1 and  m2 and  are the masses 
of the Earth and Moon respectively.  Substituting  R in Lagrange’s planetary equations (see for example Kovalevsky 
(1967)), we find:
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where n is the mean motion and γ  =  m1 / ( m1  + m12 ).
Considering the case when de / dt=0 and dω / dt=0 one can find three first integrals:

a=a0  (6)

1−e2 cos2i=k 1  (7)

e22 /5 – sin2 isin 2w =k2  (8)

where a, e, i and w are the semi-major axis, eccentricity, inclination and argument of pericentre of the satellite, and a0, 
k1 and k2 are the constants of motion. This system has a set of fixed points given by

w=90o    or  270o  and   e25 /3 cos2i=1  (9)
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Therefore, for a system with e, i and ω satisfying conditions (9), the satellite would be in what can be called a frozen 
orbit, i.e., apart from short period oscillations, the orbit would be kept fixed in size and location. 
      A simple analysis of Equations (2) and (3) shows that (Vashkov'yak & Teslenko, 2007):
 

- for  k2 > 0 and any value of k1:  w circulates;
-  for  k2 < 0 and k1 < 3/5:   w librates around 90o  or  270o ;
-  for  k2 = 0 and   w = 90o  or  270o:  i = i* ~ 39.2o ;

     So, that is the Lidov-Kozai resonance. When i > i*, the system behaves like a pendulum, with stable fixed points, 
librations around such points and circulation. In Figure 1 we reproduce the results from Ely & Lieb (2006). It presents a 
sample of the satellite's orbital evolution in a diagram e versus w. It shows a the clear dependence of the eccentricity on 
the argument of pericentre for an orbit with high inclination. All satellites inclined to the orbital plane of the third body 
(the perturber) by more then a critical angle, i*, experience a considerable growth of eccentricity. The third body causes 
the Lidov-Kozai resonance driving the eccentricity growth.

Figure 1. Sample of the satellite's orbital evolution in a diagram e versus w. There are two sets of initial values of 
eccentricity and inclination (eo, io ). One for low inclination io = 20o  and other for high inclination io = 56.2o. 

(reproduced from Ely & Lieb (2006)).

3. ECCENTRICITY GROWTH

In this section we present numerical simulations considering two dynamical systems: the 3-body problem, Moon-
Earth-satellite and the 4-body problem, Moon-Earth-Sun-satellite. In all simulations the satellite is initially in polar orbit 
(i = 90o ).
     In the case of the 3-body problem, considering a coordinate system centered in the barycenter of the Earth- Moon 
system (X,Y,Z), the equations of motion of the satellite is given by:  
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    where  m is mass and the index i=1 refer to the Earth and i=2 refer to the Moon. In this system, the equations of  
motion for the moon and the Earth are given by:

̈xi= ∑
j=1 , j≠ i
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(11)

 First, we simulated the system,  integrating numerically the equations (10) and (11), considering a satellite with 
initial eccentricity equals to 0.0001 and a range of initial altitudes between 100km and 5000km. Figure 2 shows the 
evolution of the satellite's eccentricity for the 3-body simulations, considering altitudes  h = 100, 200, 500, 1000 and 
5000km. The plots show an exponential evolution of the eccentricity. We computed the time needed in order to reach 
the eccentricity that corresponds to the collision of the satellite with the Moon. A fit of the collision time, Tcollision, as a 
function of the altitude, h, is given by the expression:

    T collision=2693×e0.062h−3.92×10−4h2

(12)

Figure 2. Time evolution of the eccentricity for the 3-body problem. The colour code indicates the initial altitude in 
kilometers.

    The same set of simulations was performed considering the 4-body problem, adding the perturbations  of the Sun. 
Now we considered a new coordinate system (X'Y'Z'), centered  at the barycenter of Sun-Earth-Moon system. In this 
case we integrate numerically the equations similar (using prime in the variables) to equations A e B, but we add the 
index i=3, where the fourth term refer to  Sun.
    However, the results found for the 4-body model were not significantly different from those found for the 3-body 
model. The empirical expression for the length of time needed to occur the collision with the Moon as a function of the 
initial altitude is given by:
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  T collision=2494×e0.063h−3.94×10−4 h2

(13)

A comparison of the two sets of simulations and the Equations (5) and (6) is shown in Figure 3. 

Figure 3. Collision time as a function of the initial altitude. The red crosses are for the 3-body simulations and green 
are for the 4-body simulations. The blue curve corresponds to Equation (5) and the purple curve corresponds to 

Equation (6).

4. CONTROLLING THE ECCENTRICITY

   In order to control the satellite's eccentricity we will use low thrust propulsion. Following the work of Sukhanov, 
(2007), we use  the locally  optimal thrust for each orbital element. This development is based on the performance 
index, through the minimization of a functional  in the direction of the orbital element to be changed. In our case, the 
eccentricity is the parameter to be minimized. The result is a vector, called Lawden's primer vector, P, which gives the 
direction of the thruster to be turned on. 
    The eccentricity of the satellite relative to the Moon is given by:

   e=1 c2

G m2
h (14)

where c is the magnitude of the angular momentum, h is the integral energy. The primer vector is given by:

  p= 1
Gm2e

Pv−r 2

a vn (15)

where r , v and vn are the vector position, velocity and tangential velocity relative to the Moon, a and P are 
the semi-major axis and semi-latus rectum relative to the Moon
Then, we have that the acceleration components to change eccentricity are given by:

pr=
1
 e

pa     and   pn=
1
 e pa−

r p
2

a  (16)

where pa=c2 / ,  pr and pn are the radial and the tangential components, respectively. 
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In  order  to  perform  the  numerical  simulations,  we  converted  the  accelerations  given  by  equations  (16) into  the 
baricentric systems of coordinates for the 3-body problem (Earth-Moon-Spacecraft), then multiplied them by the thrust 
magnitude and, finally, added the respective components  to the equations (10) and integrated together with equations 
(11).
    The approach we are proposing is a very simple one. The idea is to introduced a correction on the eccentricity every 
time it  reach a certain  limit.  The procedure is  as follows. First  fix the nominal eccentricity,  eo,  and the maximum 
acceptable increase  in eccentricity,  ∆e,  according to the mission design.  Then,  turn on the thruster every time the 
condition

eeo e (17)

is satisfied and turn off the thruster when  e >  eo .
     Following, we present the results of some simulations assuming  eo = 0.04 and  ∆e = 0.01. These simulations were 
made considering a set of different thrust values, from 0.1N up to 0.4N. In each run we measured the length of time 
TThruster, needed to correct the eccentricity value (from e = 0.04  to e = 0.05). From these results we obtained empirical 
expressions of TThruster as a function of the initial altitude and as a function of the thrust value. As an example, in Figure 4 
is shown the temporal evolution of the eccentricity and of the orbital radius for a satellite with an initial altitude of 
500km and using a thruster of 0.2N.
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Figure 4.  Temporal evolution of the eccentricity (top) and of the orbital radius (bottom) . In this simulation the initial 
altitude was 500km and the thrust value used was 0.2N.

     In Figure 5 we present the fuel consumption per year of lifetime for the whole set of simulations, i.e., different initial 
altitudes and different values of the thruster. The time interval that the thrusters are turned on and off are shown in 
Figures 6 and 7.
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Figure 5. The fuel consumption per year of lifetime for the whole set of simulations, i.e., different initial altitudes and 
different values of the thruster.

Figure 6.  Time interval that the thrusters are turned on and off, for the whole set of simulations.
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Figure 7. Zoom of Figure 6

5. FINAL COMMENTS

    In the present work we have studied the problem of polar lunar satellites in near circular orbits under the gravitational 
perturbations of the Earth and the Sun. The problem is dominated by the Lidov-Kozai resonance, which forces the 
satellite's eccentricity to growth exponentially. In order to keep the satellite with low eccentricity we propose to use low 
thrust propulsion. The results show that the satellite's lifetime can be reasonably extended (several years) at a not so 
expensive cost. This is an ongoing work.
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